线段树(segment tree)是一种Binary Search Tree或者叫做ordered binary tree。对于线段树中的每一个非叶子节点[a,b],它的左子树表示的区间为[a,(a+b)/2],右子树表示的区间为[(a+b)/2+1,b]。如下图:

[0-2]

/       \

[0-1]          [2-2]

/    \

[0-0]    [1-1]

下面看一道leetcode上的题,求动态区间的和(Range Sum Query - Mutable),题目如下:

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5] sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Note:
The array is only modifiable by the update function.
You may assume the number of calls to update and sumRange function is distributed evenly

分析如下:

一、构造线段树节点:

    class SegmentTreeNode {
int start, end;
int sum;
SegmentTreeNode ltree, rtree;
public SegmentTreeNode(int s, int e) {
start = s;
end = e;
}
}

二、建立线段树(根据数组nums,建立一个动态区间求和的线段树):

    public SegmentTreeNode buildTree(int[] nums, int left, int right) {
SegmentTreeNode root = new SegmentTreeNode(left, right);
if (left == right) {
root.sum = nums[left];
} else {
int mid = left + (right - left)/2;
root.ltree = buildTree(nums, left, mid);
root.rtree = buildTree(nums, mid+1, right);
root.sum = root.ltree.sum + root.rtree.sum;
}
return root;
}

三、线段树的更新(更新int数组下标i的值为val):

    private void update(SegmentTreeNode root, int i, int val) {
if (root.start == root.end) {
root.sum = val;
} else {
int mid = root.start + (root.end-root.start)/2;
if (i <= mid) {
update(root.ltree, i, val);
} else {
update(root.rtree, i, val);
}
root.sum = root.ltree.sum + root.rtree.sum;
}
}

四、线段树的查询(查询int数组下标 i 到 j 的元素之和):

    private int sumRange(SegmentTreeNode root, int i, int j) {
if (root.start == i && root.end == j) {
return root.sum;
} else {
int mid = root.start + (root.end - root.start)/2;
if (j <= mid) {
return sumRange(root.ltree, i, j);
} else if (i > mid) {
return sumRange(root.rtree, i, j);
} else {
return sumRange(root.ltree, i, root.ltree.end) + sumRange(root.rtree, root.rtree.start, j);
}
}
}

综上所述,上面Range Sum Query - Mutable的AC代码如下:

class SegmentTreeNode {
int start, end;
int sum;
SegmentTreeNode ltree, rtree;
public SegmentTreeNode(int s, int e) {
start = s;
end = e;
}
} public class NumArray {
SegmentTreeNode root = null; public NumArray(int[] nums) {
if(nums == null || nums.length == 0) {
return;
}
root = buildTree(nums, 0, nums.length-1);
} public SegmentTreeNode buildTree(int[] nums, int left, int right) {
SegmentTreeNode root = new SegmentTreeNode(left, right);
if (left == right) {
root.sum = nums[left];
} else {
int mid = left + (right - left)/2;
root.ltree = buildTree(nums, left, mid);
root.rtree = buildTree(nums, mid+1, right);
root.sum = root.ltree.sum + root.rtree.sum;
}
return root;
} void update(int i, int val) {
update(root, i, val);
} private void update(SegmentTreeNode root, int i, int val) {
if (root.start == root.end) {
root.sum = val;
} else {
int mid = root.start + (root.end-root.start)/2;
if (i <= mid) {
update(root.ltree, i, val);
} else {
update(root.rtree, i, val);
}
root.sum = root.ltree.sum + root.rtree.sum;
}
} public int sumRange(int i, int j) {
return sumRange(root, i, j);
} private int sumRange(SegmentTreeNode root, int i, int j) {
if (root.start == i && root.end == j) {
return root.sum;
} else {
int mid = root.start + (root.end - root.start)/2;
if (j <= mid) {
return sumRange(root.ltree, i, j);
} else if (i > mid) {
return sumRange(root.rtree, i, j);
} else {
return sumRange(root.ltree, i, root.ltree.end) + sumRange(root.rtree, root.rtree.start, j);
}
}
}
}

segment树(线段树)的更多相关文章

  1. 浅谈树套树(线段树套平衡树)&学习笔记

    0XFF 前言 *如果本文有不好的地方,请在下方评论区提出,Qiuly感激不尽! 0X1F 这个东西有啥用? 树套树------线段树套平衡树,可以用于解决待修改区间\(K\)大的问题,当然也可以用 ...

  2. 【BZOJ-3165】Segment 李超线段树(标记永久化)

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 368  Solved: 148[Submit][Sta ...

  3. codeforces 242E - XOR on Segment (线段树 按位数建树)

    E. XOR on Segment time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...

  4. HDU 4107 Gangster Segment Tree线段树

    这道题也有点新意,就是须要记录最小值段和最大值段,然后成段更新这个段,而不用没点去更新,达到提快速度的目的. 本题过的人非常少,由于大部分都超时了,我严格依照线段树的方法去写.一開始竟然也超时. 然后 ...

  5. Luogu P4097 [HEOI2013]Segment 李超线段树

    题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...

  6. 2019.02.11 bzoj3165: [Heoi2013]Segment(线段树)

    传送门 题意简述:要求支持两种操作: 插入一条线段. 询问与直线x=kx=kx=k相交的线段中,交点最靠上的线段的编号. 思路: 直接上李超线段树即可. 代码: #include<bits/st ...

  7. Segment 李超线段树

    题目大意: 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 2.给定一个数 k,询问与直线 x = k 相交的线段中,交点最靠上的线段的编号. 若 ...

  8. 【洛谷P4097】Segment 李超线段树

    题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...

  9. BZOJ3165: [Heoi2013]Segment(李超线段树)

    题意 题目链接 Sol 李超线段树板子题.具体原理就不讲了. 一开始自己yy着写差点写自闭都快把叉积搬出来了... 后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz #include& ...

随机推荐

  1. 使用Typescript重构axios(三)——实现基础功能:处理get请求url参数

    0. 系列文章 1.使用Typescript重构axios(一)--写在最前面 2.使用Typescript重构axios(二)--项目起手,跑通流程 3.使用Typescript重构axios(三) ...

  2. Linux\centos 配置阿里云源

    # Aliyun 源配置CentOS1.备份mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup2 ...

  3. Netty处理器重要概念

    1.Netty的处理器可以分为两类:入站处理器和出战处理器 2.入站处理器顶层是ChannelInboundHandler,出战处理器顶层是ChannelOutboundHandler 3.数据处理时 ...

  4. 如何使用Sping Data JPA更新局部字段

    问题描述 在更新数据时,有时候我们只需要更新一部分字段,其他字段保持不变.Spring Data JPA并未提供现成的接口,直接使用save()更新会导致其他字段被Null覆盖掉. 解决办法 通常有两 ...

  5. Andorid开发中遇到的问题

    最近开始学习开发Android App,找了本教程,学了一些基本知识后,就开始着手做一个例子. 我始终觉得在做中学,可能会稍微快一点.很快,一个具有初步功能的App被我撸出来了. 在模拟器上运行,我发 ...

  6. 【阿里巴巴-高德-汽车事业部】【内推】Java技术专家、前端技术专家、C++技术专家(长期招聘)

    简历接收邮箱:yx185737@alibaba-inc.com 邮件请备注来自CSDN 一.Java技术专家 职位描述 研究汽车智能化和在线服务前沿技术,从事在线数据服务和车联网服务的设计和研发 负责 ...

  7. usaco training <1.2 Greedy Gift Givers>

    题面 Task 'gift1': Greedy Gift Givers A group of NP (2 ≤ NP ≤ 10) uniquely named friends has decided t ...

  8. 【目标检测实战】目标检测实战之一--手把手教你LMDB格式数据集制作!

    文章目录 1 目标检测简介 2 lmdb数据制作 2.1 VOC数据制作 2.2 lmdb文件生成 lmdb格式的数据是在使用caffe进行目标检测或分类时,使用的一种数据格式.这里我主要以目标检测为 ...

  9. GitHub远程库的搭建以及使用

    GitHub远程库的搭建 一).配置SSH 步骤: 1).注册GitHub账号 2).本地git仓库与远程的GitHub仓库的传输要通过SSH进行加密 3).创建SSH key ​ 1.检查在用户主目 ...

  10. HashMap的源码学习以及性能分析

    HashMap的源码学习以及性能分析 一).Map接口的实现类 HashTable.HashMap.LinkedHashMap.TreeMap 二).HashMap和HashTable的区别 1).H ...