【题解】Puzzle [Uva1399]

传送门:\(\text{Puzzle [Uva1399]}\)

【题目描述】

给定 \(m\) 和 \(n\),表示有 \(m\) 种不同的字符(大写字母\(A,B,C \cdots\)),\(n\) 个禁止串,请构造一个不包含任何禁止串最长字符串 并将其输出。如果可以无限长或者无解输出 \(No\),如果存在多解则输出字典序最大的一种。

【输入】

第一行一个整数T表示数据组数。

接下来每组数据第一行为两个整数 \(m,n\),接下来 \(n\) 行输入 \(n\) 个禁止串。

【输出】

一行表示答案。

【样例】

样例输入:
3
2 4
AAA
AB
BA
BB
2 4
AAA
BBB
ABAB
BBAA
3 7
AA
ABA
BAC
BB
BC
CA
CC 样例输出:
AA
No
ACBAB

【数据范围】

\(100\%:\) \(1 \leqslant m \leqslant 26,\) \(1 \leqslant n \leqslant 1000\)

【分析】

\(AC\) 自动机 \(+\) \(dp\) 的裸题。

按照套路,先对 \(n\) 个禁止串建立 \(AC\) 自动机,在每个禁止串的结尾节点处打个 \(end\) 标记,然后利用 \(fail\) 树向上传递标记。

用 \(dp[x]\) 表示从 \(AC\) 自动机上节点 \(x\) 开始往下 不经过禁止串结尾标记 所能延伸的最大长度,则有 \(dp[x]=max\{dp[tr[x][ch]]+1\}\) \((ch \in[0,m-1])\) 。

从根节点开始 \(dfs\),用 \(vis[x]\) 记录 \(x\) 节点是否在当前扫描出来的路径上,如果 \(vis[x]=1\),则说明在 \(AC\) 自动机上出现了合法的循环,如果一直沿着这个循环延伸下去,就可以构造出无限长的合法串。

为了防止超时,还需要记忆化,用 \(pan[x]\) 记录 \(x\) 节点是否已经搜过(注意 \(vis\) 和 \(pan\) 判断的先后顺序)。

至于输出答案,在 \(dp\) 转移时用一个辅助数组 \(g\) 记录最优决策点即可。

另外,这题有个简化版(只需要判断是否可以无限长):病毒 \(\text{[POI2000] [P2444]}\)

【Code】

#include<algorithm>
#include<cstring>
#include<cstdio>
#include<queue>
#define LL long long
#define Re register int
using namespace std;
const int N=1003,M=5e4+3;
int n,C,T;char ch[53];
inline void in(Re &x){
int fu=0;x=0;char c=getchar();
while(c<'0'||c>'9')fu|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=fu?-x:x;
}
struct AC_Automaton{
int O,g[M],ed[M],dp[M],vis[N],pan[M],fail[M],tr[M][26];queue<int>Q;
inline void CL(){
memset(fail,0,sizeof(fail));
memset(pan,0,sizeof(pan));
memset(vis,0,sizeof(vis));
memset(tr,0,sizeof(tr));
memset(ed,0,sizeof(ed));
memset(dp,0,sizeof(dp));
memset(g,-1,sizeof(g));
O=1;
}
inline void insert(char ch[]){
Re p=1;
for(Re i=1;ch[i];++i){
Re a=ch[i]-'A';//注意是大写A
if(!tr[p][a])tr[p][a]=++O;
p=tr[p][a];
}
ed[p]=1;
}
inline void get_fail(){
for(Re i=0;i<C;++i)tr[0][i]=1;
Q.push(1);
while(!Q.empty()){
Re x=Q.front();Q.pop();
for(Re i=0;i<C;++i)
if(tr[x][i])fail[tr[x][i]]=tr[fail[x]][i],Q.push(tr[x][i]);
else tr[x][i]=tr[fail[x]][i];
ed[x]|=ed[fail[x]];
}
}
inline int dfs(Re x){
if(vis[x])return 1;//在正在搜的路径中出现过x,即出现循环
if(pan[x])return 0;//已经搜过x了,肯定无果
vis[x]=pan[x]=1;
for(Re i=C-1,to;i>=0;--i)//注意求字典序最大
if(!ed[to=tr[x][i]]){
if(dfs(to))return 1;
if(dp[to]+1>dp[x])dp[x]=dp[to]+1,g[x]=i;
}
vis[x]=0;//搜过x后要换成fa[x]的另一条分支往下延伸,所以要还原成0
return 0;
}
inline void sakura(){
if(dfs(1))puts("No");//无限长
else{
Re ans=0;
for(Re i=1;i<=O;++i)if(dp[i]>dp[ans])ans=i;
if(!ans)puts("No");//无解
else{
Re p=1;
while(g[p]!=-1){
printf("%c",'A'+g[p]);
p=tr[p][g[p]];
}
puts("");
}
}
}
}AC;
int main(){
// freopen("123.txt","r",stdin);
in(T);
while(T--){
in(C),in(n),AC.CL();
while(n--)scanf("%s",ch+1),AC.insert(ch);
AC.get_fail(),AC.sakura();
}
}

【题解】Puzzle [Uva1399]的更多相关文章

  1. ZOJ 1602 Multiplication Puzzle(区间DP)题解

    题意:n个数字的串,每取出一个数字的代价为该数字和左右的乘积(1.n不能取),问最小代价 思路:dp[i][j]表示把i~j取到只剩 i.j 的最小代价. 代码: #include<set> ...

  2. 题解【POJ1651】Multiplication Puzzle

    Description The multiplication puzzle is played with a row of cards, each containing a single positi ...

  3. HihoCoder 1634 Puzzle Game(最大子矩阵和)题解

    题意:给一个n*m的矩阵,你只能选择一个格子把这个格子的数换成p(也可以一个都不换),问最大子矩阵和最小可能是多少? 思路: 思路就是上面这个思路,这里简单讲一下怎么n^3求最大子矩阵和:枚举两行(或 ...

  4. PAT甲题题解-1128. N Queens Puzzle (20)-做了一个假的n皇后问题

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/6789810.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  5. POJ1651:Multiplication Puzzle——题解

    http://poj.org/problem?id=1651 题目大意:同“乘法游戏”,这里将乘法游戏的题面复制过来. 乘法游戏是在一行牌上进行的.每一张牌包括了一个正整数.在每一个移动中,玩家拿出一 ...

  6. POJ3678:Katu Puzzle——题解

    http://poj.org/problem?id=3678 总觉得这题比例题简单. 设a为x取0的点,a+n为x取1的点. 我们还是定义a到b表示取a必须取b. 那么我们有: 当AND: 1.当c= ...

  7. 题解报告:hdu 1098 Ignatius's puzzle

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098 题目中文是这样的: 伊格内修斯在数学上很差,他遇到了一个难题,所以他别无选择,只能上诉埃迪. 这 ...

  8. ZOJ 2836 Number Puzzle 题解

    题面 lcm(x,y)=xy/gcd(x,y) lcm(x1,x2,···,xn)=lcm(lcm(x1,x2,···,xn-1),xn) #include <bits/stdc++.h> ...

  9. 题解 CF613E Puzzle Lover

    解题思路 其实仔细观察我们可以发现路径一定是一个类似于下图的一个左括号之后中间随便反复曲折,然后右边在来一个右括号. 然后对于两个括号形状的东西其实是可以利用 Hash 来判等特殊处理的. 对于中间的 ...

随机推荐

  1. C#排序案例

    using System; namespace 排序案例 { class Program { static void Main(string[] args) { //定义随机数列 int a, b, ...

  2. C# 修改配置文件

    /// <summary> /// 保存配置文件的设定 /// </summary> /// <param name="Key"></pa ...

  3. c#中xml增删查改

    /// <summary> /// xml转list /// </summary> /// <typeparam name="T">目标对象&l ...

  4. Python数据分析揭秘知乎大V的小秘密

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 清风小筑 PS:如有需要Python学习资料的小伙伴可以加点击下方链 ...

  5. list方法补充

    在上一个随便我们写了list 常用的方法,该随便为一些需要补充的内容 注:本次例子为: student = ["张天赐","小明","小红" ...

  6. ojdbc.jar在maven中报错(下载不了)

    一.问题 由于oracle的版权问题,java连接oracle的jar(ojdbc.jar)在maven的中央仓库下载不到,然后导致maven项目报错. 二.解决 第一步:下载ojdbc.jar 由于 ...

  7. Chrome浏览器Json查看插件JsonHandle下载以及无法安装插件的解决方法

    场景 在使用Chrome浏览器查看Json数据时如果没有插件会挤作一团. 安装JsonHandle插件后 博客: https://blog.csdn.net/badao_liumang_qizhi 关 ...

  8. 点击事件的坐标计算(client || offset) +(X || Width || Left) 各种排列组合别绕晕

    结论: 1,X,Y的都是属于点击位置的,width.height.left.top都是属于DOM的. 2,涉及的所有位置只与document或DOM内部有关,与DOM如何定位,周围有没有其他占位HTM ...

  9. CSS元素显示模式

    CSS的元素显示模式 什么是元素显示模式 作用:网页的标签非常多,在不同的地方会用到不同类型的标签,了解他们的特点可以更好的布局我们的网页 元素的显示模式就是元素(标签)以什么样的方式进行显示,比如& ...

  10. 大数据安全利器ranger 编译安装

    ranger大数据领域的一个集中式安全管理框架,它可以对诸如hdfs.hive.kafka.storm等组件进行细粒度的权限控制.本文将介绍部署过程 1.  部署准备 ranger:    进入apa ...