Paper | Making a "Completely Blind" Image Quality Analyzer
质量评估大佬AC Bovik的作品,1200+引用。
目标问题:提出一些普适的、与主观质量接近的客观评估指标。普适意味着:无失真先验。
背景:现有的普适NR-IQA方法需要训练集(图像包含预期的失真,且需要人类评分数据)。这种方法泛化能力差,且要求高。
解决思路:从自然图像中获取一些统计数据(natural scene statistic, NSS),用来刻画图像质量。即不再需要人类评分数据用于训练。基于此的方法称为Natural Image Quality Evaluator (NIQE)。
效果:与SOTA的、基于训练的NR-IQA方法平起平坐。
意义:这种方法才是真正的blind。因为如果我们有合适的数据集,就说明我们对失真有了一定的预判,使得训练集和测试集的失真模式是一致的。虽然测试阶段是盲的,但训练显然非盲。
1. 技术细节
作者称之为no reference opinion-unaware distortion-unaware IQA model。一句话概括:将一系列quality-aware的特征,用一个多元高斯(multivariate Gaussian MVG)模型进行建模。那么,有损图像的质量就是其MVG 以及 自然图像的MVG 的距离。
1.1 NSS特征
第一步,图像归一化:减去局部均值,除以标准差+1:
这一步即计算了本文选择的NSS!根据参考文献[10]【这个文献很重要】,无损自然图像的式(1)遵循高斯分布。如果是非自然图像(如计算机渲染图像)或受损图像,那么分布就不像高斯分布。
注意:该指标在BRISQUE[3]中已经被用过。但BRISQUE方法没有NIQE好?
1.2 选择锐利块来计算NSS
第二步,我们选择块,来计算以上的NSS。注意,我们只考虑那些显著性高的区域,一般是锐利的区域[12]。前面我们计算了每个像素点邻域的标准差,因此我们可以据此估算该区域的锐利程度:
如图即选出的区域示例:
然后,我们简单设一个阈值,该阈值为整个图像峰值锐利度的75%。超过阈值即锐利块,被选出计算NSS。
1.3 一张图像得到36个特征
第三步,我们用零均值的广义高斯分布(generalized Gaussian distribution, GGD)来建模自然图像的NSS:
和[3]一样,本文通过相邻像素NSS的相乘,来检测该NSS指标的异常。
建模时,我们考虑4个方向、2种块的尺度。每一个GGD模型有4个参数,一共能产生36个特征。产生方法要看[3]。
1.4 用MVG建模这36个特征
第四步,我们用MVG建模自然图像的这36个特征。
1.5 NIQE指标
最后,我们计算目标MVG和自然MVG的距离,即NIQE得分:
2. 实验
我们只看一个实验:我们需要多少自然图像进行训练,模型才会收敛?
可见,当超过100张图像时,模型的稳定性就很好了。
Paper | Making a "Completely Blind" Image Quality Analyzer的更多相关文章
- Paper | No-reference Quality Assessment of Deblocked Images
目录 故事背景 本文方法(DBIQ) 发表在2016年Neurocomputing. 摘要 JPEG is the most commonly used image compression stand ...
- How to implement an algorithm from a scientific paper
Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scie ...
- {ICIP2014}{收录论文列表}
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...
- Data Visualization – Banking Case Study Example (Part 1-6)
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...
- How To Improve Deep Learning Performance
如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...
- CodeForces 219B Special Offer! Super Price 999 Bourles!
Special Offer! Super Price 999 Bourles! Time Limit:1000MS Memory Limit:262144KB 64bit IO For ...
- Apache 'mod_accounting'模块SQL注入漏洞(CVE-2013-5697)
漏洞版本: mod_accounting 0.5 漏洞描述: BUGTRAQ ID: 62677 CVE ID: CVE-2013-5697 mod_accounting是Apache 1.3.x上的 ...
- Play XML Entities
链接:https://pentesterlab.com/exercises/play_xxe/course Introduction This course details the exploitat ...
- Generic XXE Detection
参考连接:https://www.christian-schneider.net/GenericXxeDetection.html In this article I present some tho ...
随机推荐
- 机器学习模型| 监督学习| KNN | 决策树
分类模型 K近邻 逻辑斯谛回归 决策树 K近邻(KNN) 最简单最初级的分类器,就是将全部的训练数据所对应的类别都记录下来,当测试对象的属性和某个训练对象的属性完全匹配时,便可以对其进行分类K近邻(k ...
- Paper | Highway Networks
目录 1. 网络结构 2. 分析 解决的问题:在当时,人们认为 提高深度 是 提高精度 的法宝.但是网络训练也变得很困难.本文旨在解决深度网络训练难的问题,本质是解决梯度问题. 提出的网络:本文提出的 ...
- Python程序中的线程操作-concurrent模块
目录 一.Python标准模块--concurrent.futures 二.介绍 三.基本方法 四.ProcessPoolExecutor 五.ThreadPoolExecutor 六.map的用法 ...
- css兄弟选择器,+ ~选择器的区别
壹 ❀ 引 实习生在写搜索框下拉提示时,遇到了不知道怎么解决的问题,所以来问我.效果不难,鼠标选中输入框(focus)时,展示搜索关键字相关提示,看了眼dom结构是这样的: 在她的理解里面,选中父元 ...
- Lambda,递归
1.Lamdba表达式 1.Lambda表达式的标准格式 三部分组成: 一些参数 一个箭头 一段代码 格式: (参数列表) -> {一些重写方法的代码} 解释说明格式: ():接口中抽象方法的参 ...
- 划词标注1——使用svg绘制换行文本并自动识别库中字典数据
业务需求 给出一段文本,自动识别出文本中包含的关键字信息,关键字是库里已知的数据,根据类型的不同显示出不同的颜色 业务分析 1)采用css:文本识别出来后,根据识别出的文本更改对应文本的dom,通过更 ...
- MongoDB自学------(5)MongoDB分片
分片 在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求. 当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量. ...
- mysql 数据库分表小实例
项目开发中,我们的数据库数据越来越大,随之而来的是单个表中数据太多.以至于查询书读变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈. 当出现这种情况时,我们可以考虑分表,即将单 ...
- Python中最常用的字符串方法!
字符串是字符序列.Python中内置的string类代表基于Unicode国际字符集的字符串.除了Python中常见的操作外,字符串还有一些专属于它们的附加方法.下图显示了所有这些可用的方法: Pyt ...
- PHP面试题2019年小米工程师面试题及答案解析
一.单选题(共29题,每题5分) 1.PHP面向对象方法重写描述错误的是? A.子类必须继承父类 B.子类可以重写父类已有方法 C.重写之后子类会调用父类方法 D.子类也可以具有与父类同名的属性,进行 ...