质量评估大佬AC Bovik的作品,1200+引用。

目标问题:提出一些普适的、与主观质量接近的客观评估指标。普适意味着:无失真先验。

背景:现有的普适NR-IQA方法需要训练集(图像包含预期的失真,且需要人类评分数据)。这种方法泛化能力差,且要求高。

解决思路:从自然图像中获取一些统计数据(natural scene statistic, NSS),用来刻画图像质量。即不再需要人类评分数据用于训练。基于此的方法称为Natural Image Quality Evaluator (NIQE)。

效果:与SOTA的、基于训练的NR-IQA方法平起平坐。

意义:这种方法才是真正的blind。因为如果我们有合适的数据集,就说明我们对失真有了一定的预判,使得训练集和测试集的失真模式是一致的。虽然测试阶段是盲的,但训练显然非盲。

1. 技术细节

作者称之为no reference opinion-unaware distortion-unaware IQA model。一句话概括:将一系列quality-aware的特征,用一个多元高斯(multivariate Gaussian MVG)模型进行建模。那么,有损图像的质量就是其MVG 以及 自然图像的MVG 的距离。

1.1 NSS特征

第一步,图像归一化:减去局部均值,除以标准差+1:

这一步即计算了本文选择的NSS!根据参考文献[10]【这个文献很重要】,无损自然图像的式(1)遵循高斯分布。如果是非自然图像(如计算机渲染图像)或受损图像,那么分布就不像高斯分布。

注意:该指标在BRISQUE[3]中已经被用过。但BRISQUE方法没有NIQE好?

1.2 选择锐利块来计算NSS

第二步,我们选择块,来计算以上的NSS。注意,我们只考虑那些显著性高的区域,一般是锐利的区域[12]。前面我们计算了每个像素点邻域的标准差,因此我们可以据此估算该区域的锐利程度:

如图即选出的区域示例:

然后,我们简单设一个阈值,该阈值为整个图像峰值锐利度的75%。超过阈值即锐利块,被选出计算NSS。

1.3 一张图像得到36个特征

第三步,我们用零均值的广义高斯分布(generalized Gaussian distribution, GGD)来建模自然图像的NSS:

和[3]一样,本文通过相邻像素NSS的相乘,来检测该NSS指标的异常。

建模时,我们考虑4个方向、2种块的尺度。每一个GGD模型有4个参数,一共能产生36个特征。产生方法要看[3]。

1.4 用MVG建模这36个特征

第四步,我们用MVG建模自然图像的这36个特征。

1.5 NIQE指标

最后,我们计算目标MVG和自然MVG的距离,即NIQE得分:

2. 实验

我们只看一个实验:我们需要多少自然图像进行训练,模型才会收敛?

可见,当超过100张图像时,模型的稳定性就很好了。

Paper | Making a "Completely Blind" Image Quality Analyzer的更多相关文章

  1. Paper | No-reference Quality Assessment of Deblocked Images

    目录 故事背景 本文方法(DBIQ) 发表在2016年Neurocomputing. 摘要 JPEG is the most commonly used image compression stand ...

  2. How to implement an algorithm from a scientific paper

    Author: Emmanuel Goossaert 翻译 This article is a short guide to implementing an algorithm from a scie ...

  3. {ICIP2014}{收录论文列表}

    This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinc ...

  4. Data Visualization – Banking Case Study Example (Part 1-6)

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  5. How To Improve Deep Learning Performance

    如何提高深度学习性能 20 Tips, Tricks and Techniques That You Can Use ToFight Overfitting and Get Better Genera ...

  6. CodeForces 219B Special Offer! Super Price 999 Bourles!

    Special Offer! Super Price 999 Bourles! Time Limit:1000MS     Memory Limit:262144KB     64bit IO For ...

  7. Apache 'mod_accounting'模块SQL注入漏洞(CVE-2013-5697)

    漏洞版本: mod_accounting 0.5 漏洞描述: BUGTRAQ ID: 62677 CVE ID: CVE-2013-5697 mod_accounting是Apache 1.3.x上的 ...

  8. Play XML Entities

    链接:https://pentesterlab.com/exercises/play_xxe/course Introduction This course details the exploitat ...

  9. Generic XXE Detection

    参考连接:https://www.christian-schneider.net/GenericXxeDetection.html In this article I present some tho ...

随机推荐

  1. CometOJ10C 鱼跃龙门

    题目链接 problem 实际上就是对于给定的\(n\)求一个最小的\(x\)满足\(\frac{x(x+1)}{2}=kn(k\in N^*)\). solution 对上面的式子稍微变形可得\(x ...

  2. kindEditor 修改上传图片的路径

    压缩过的js类似

  3. IT兄弟连 Java语法教程 流程控制语句 循环结构语句2

    双重for循环 如果把一个循环放在另一个循环体中,那么就可以形成嵌套循环,也就是双重for循环,当然嵌套循环也可以是for循环嵌套while循环,也可以是while循环嵌套while循环……,即各种类 ...

  4. 现代C++实现多种print

    目录 Print Version1 Print Version2 Print Version3 Print Version4 容器的Print tuple容器的print 结语 学习C++的朋友会遇到 ...

  5. Libs - Blog签名

    <div id="AllanboltSignature"> <p id="PSignature" style="padding-to ...

  6. 由 ToString()和Convert.ToString() 引发的问题

    对于久经沙场的程序猿来说,类型转换再熟悉不过了,在代码中我们也会经常用到. 前几天,有个学生问我关于类型转换ToString()和Convert.ToString()的区别,这么常用的东西我竟然支支吾 ...

  7. LinuxShell——管道命令

    LinuxShell——管道命令 摘要:本文主要学习了Shell中的管道命令. grep命令 grep命令的作用是在文件中提取和匹配符合条件的字符串行,全称是Global Regular Expres ...

  8. java基础第十七篇之网络编程和装饰者模式

    1:网络概述 1.1 网络的发展Net 1964年,美国人---> 阿帕网--->以太网Internet 1.2 网络的通信协议 windows电脑,android手机,Mac平板---& ...

  9. WebService 接收JSON字符串

    晚上学习时公司的同事,暂且叫A吧,A:“我们公司XXX纺织的AM接口不通,让我看下”,我:“接口写的不是有AJAX异步请求的示例嘛,参考下,我都测试过接口,都是通的.”,A:“我走的不是AJAX,走的 ...

  10. windows 下使用cmake指定visual studio 版本

    https://blog.csdn.net/iceboy314159/article/details/87829950