理解Spark运行模式(一)(Yarn Client)
Spark运行模式有Local,STANDALONE,YARN,MESOS,KUBERNETES这5种,其中最为常见的是YARN运行模式,它又可分为Client模式和Cluster模式。这里以Spark自带的SparkPi来说明这些运行模式。
本文作为第一篇,先结合SparkPi程序来说明Yarn Client方式的流程。
以下是Spark中examples下的SparkPi程序。
// scalastyle:off println
package org.apache.spark.examples import scala.math.random import org.apache.spark.sql.SparkSession /** Computes an approximation to pi */
object SparkPi {
def main(args: Array[String]) {
val spark = SparkSession
.builder
.appName("Spark Pi")
.getOrCreate()
val slices = if (args.length > 0) args(0).toInt else 2
val n = math.min(100000L * slices, Int.MaxValue).toInt // avoid overflow
val count = spark.sparkContext.parallelize(1 until n, slices).map { i =>
val x = random * 2 - 1
val y = random * 2 - 1
if (x*x + y*y <= 1) 1 else 0
}.reduce(_ + _)
println(s"Pi is roughly ${4.0 * count / (n - 1)}")
spark.stop()
}
}
// scalastyle:on println
这个是Spark用于计算圆周率PI的scala程序,思想很简单,就是利用以坐标轴原点为中心画一个边长为2的正方形,原点距离正方形的上下左右边距离均为1,然后再以原点为中心画一个半径为1的圆,此时正方形的面积是4,圆的面积是PI,上面程序所做的就是在正方形里随机取若干个点(比如上面程序默认的20万),计算有多少个点落在圆形里面,那么可以认为这个等式是成立的,即:“圆面积” / “正方形面积” = “落在圆内的点数” / “正方形内的点数”,也就是,PI / 4 = count / (n-1),所以PI = 4 * count / (n-1)。
Spark程序可以分为Driver部分和Executor部分,Driver可以认为是程序的master部分,具体而言1~16行和22~25行都是Driver部分,其余的17~21行是Executor部分,即执行具体逻辑计算的部分,上面程序slices默认是2,也就是说,默认会有2个Task来执行计算。
下面来以yarn client方式来执行这个程序,注意执行程序前先要启动hdfs和yarn,最好同时启动spark的history server,这样即使在程序运行完以后也可以从Web UI中查看到程序运行情况。
输入以下命令:
[root@BruceCentOS4 spark]# $SPARK_HOME/bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode client $SPARK_HOME/examples/jars/spark-examples_2.11-2.3.0.jar
以下是程序运行输出信息部分截图,
开始部分:

中间部分:

结束部分:

由于程序是以yarn client方式运行的,因此Driver是运行在客户端的(BruceCentOS4上的SparkSubmit进程),同时在BruceCentOS和BruceCentOS3上各运行了1个Executor进程(进程名字:CoarseGrainedExecutorBackend),另外在BruceCentOS上还有1个名字为ExecutorLauncher的进程,这个进程主要是作为Yarn程序中的ApplicationMaster,因为Driver运行在客户端,它仅仅作为ApplicationMaster为运行Executor向ResourceManager申请资源。
SparkUI上的Executor信息:

BruceCentOS4上的客户端进程(包含Spark Driver):

BruceCentOS上的ApplicationMaster和Executor:

BruceCentOS3上的Executor:

下面具体描述下Spark程序在yarn client模式下运行的具体流程。
这里是一个流程图:

- Spark Yarn Client向YARN的ResourceManager申请启动ApplicationMaster。同时在SparkContent初始化中将创建DAGScheduler和TASKScheduler等,由于我们选择的是Yarn-Client模式,程序会选择YarnClientSchedulerBackend。
- ResourceManager收到请求后,在集群中选择一个NodeManager,为该应用程序分配第一个Container,要求它在这个Container中启动应用程序的ApplicationMaster,对应进程名字是ExecutorLauncher。与YARN-Cluster区别的是在该ApplicationMaster不运行SparkContext,只与SparkContext进行联系进行资源的分派。
- Client中的SparkContext初始化完毕后,与ApplicationMaster建立通讯,向ResourceManager注册,根据任务信息向ResourceManager申请资源(Container)。
- 一旦ApplicationMaster申请到资源(也就是Container)后,便与对应的NodeManager通信,要求它在获得的Container中启动CoarseGrainedExecutorBackend,CoarseGrainedExecutorBackend启动后会向Client中的SparkContext注册并申请Task。
- client中的SparkContext分配Task给CoarseGrainedExecutorBackend执行,CoarseGrainedExecutorBackend运行Task并向Driver汇报运行的状态和进度,以让Client随时掌握各个任务的运行状态,从而可以在任务失败时重新启动任务。
- 应用程序运行完成后,Client的SparkContext向ResourceManager申请注销并关闭自己。
以上就是个人对Spark运行模式(yarn client)的一点理解,其中参考了“求知若渴 虚心若愚”博主的“Spark(一): 基本架构及原理”的部分内容(其中基于Spark2.3.0对某些细节进行了修正),在此表示感谢。
理解Spark运行模式(一)(Yarn Client)的更多相关文章
- 理解Spark运行模式(二)(Yarn Cluster)
上一篇说到Spark的yarn client运行模式,它与yarn cluster模式的主要区别就是前者Driver是运行在客户端,后者Driver是运行在yarn集群中.yarn client模式一 ...
- 理解Spark运行模式(三)(STANDALONE和Local)
前两篇介绍了Spark的yarn client和yarn cluster模式,本篇继续介绍Spark的STANDALONE模式和Local模式. 下面具体还是用计算PI的程序来说明,examples中 ...
- spark运行模式之二:Spark的Standalone模式安装部署
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...
- spark运行模式之一:Spark的local模式安装部署
Spark运行模式 Spark 有很多种模式,最简单就是单机本地模式,还有单机伪分布式模式,复杂的则运行在集群中,目前能很好的运行在 Yarn和 Mesos 中,当然 Spark 还有自带的 Stan ...
- Spark运行模式与Standalone模式部署
上节中简单的介绍了Spark的一些概念还有Spark生态圈的一些情况,这里主要是介绍Spark运行模式与Spark Standalone模式的部署: Spark运行模式 在Spark中存在着多种运行模 ...
- spark运行模式
一.Spark运行模式 Spark有以下四种运行模式: local:本地单进程模式,用于本地开发测试Spark代码; standalone:分布式集群模式,Master-Worker架构,Master ...
- Spark运行模式概述
Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGSche ...
- Spark运行模式_基于YARN的Resource Manager的Custer模式(集群)
使用如下命令执行应用程序: 和"基于YARN的Resource Manager的Client模式(集群)"运行模式,区别如下: 在Resource Manager端提交应用程序,会 ...
- Spark运行模式:cluster与client
When run SparkSubmit --class [mainClass], SparkSubmit will call a childMainClass which is 1. client ...
随机推荐
- Python3之多线程学习
这里做一个自己复习多线程的笔记 Python中使用线程有两种方式:函数或者用类来包装线程对象. 函数式:调用 _thread 模块中的start_new_thread()函数来产生新线程.语法如下: ...
- 【OUC2019写作】学术论文写作第九小组第一次博客作业
个人简介 潘旻琦:我是潘旻琦:我的爱好是游泳:羊肉泡馍是海大食堂中我最喜欢的一道菜(清真食堂):一句想说的话是:“追随本心,坚持不懈”. 郭念帆:我是郭念帆:我的爱好是足球:海大食堂中最喜欢的一道菜偏 ...
- python里怎么查看数据类型
python里怎么查看数据类型? python里可以通过type()函数来查看数据类型. Python 内置函数 Python 内置函数 Python type() 函数如果你只有第一个参数则返回对象 ...
- 浏览器标签tab窗口切换时事件状态侦听
做到 是大屏项目,用的websocket,在浏览器切换标签窗口后,过了一段时间回来,页面会非常卡,所以想页面切回来的时候刷新页面,找到了这个方法,这是原来的例子.这段代码可以自己复制去做下测试 var ...
- 小白学 Python(7):基础流程控制(上)
人生苦短,我选Python 前文传送门 小白学 Python(1):开篇 小白学 Python(2):基础数据类型(上) 小白学 Python(3):基础数据类型(下) 小白学 Python(4):变 ...
- springboot 打jar包时分离配置文件
修改pom.xml文件 <build> <resources> <resource> <directory>src/main/resources< ...
- java实现,使用opencv合成全景图,前端使用krpano展示
这周花三天做了一demo,算上之前的,怎么也有五天,上一篇是opencv介绍,以及定义native方法,通过本地图片路径传参,底层调用Opencv图像库合成,有兴趣的可以看看,这篇重点在于krpano ...
- GC 知识点补充——CMS
之前已经讲过了不少有关 GC 的内容,今天准备将之前没有细讲的部分进行补充,首先要提到的就是垃圾收集器. 基础的回收方式有三种:清除.压缩.复制,衍生出来的垃圾收集器有: Serial 收集器 新生代 ...
- intellij idea - Project Structure 项目结构详解(简单明了)
IDEA Project Structure 设置 可以点击 按钮,或者使用快捷键 Ctrl + Shift + Alt + S 打开 Project Structure .如下如所示: 项目的左 ...
- php curl 生成的cookie 文件含义 cookie 属性含义
最近用了curl 感觉还是很方便的,看了下curl生成的 cookie 文件 格式 , 对其中一些值的含义不是很明白,去找了些cookie的资料看了下,做下备忘 PHP curl 生成 的 cooki ...