约定

  • \(A\perp B\) 表示 \(\gcd(A,B)=1\)。
  • \(A\mid B\) 表示 \(B\equiv 0\pmod{A}(A\neq0)\)。

引入

考虑以下这道题:

有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二。 問物幾何?—— 《孫子算經》

也就是说,求出下列关于 \(x\) 方程组的最小整数解:

\[\begin{cases}
x\equiv2\pmod{3}\\
x\equiv3\pmod{5}\\
x\equiv2\pmod{7}
\end{cases}
\]

解析

首先我们考虑什么时候 \(\equiv3\pmod{3}\),什么时候 \(\equiv3\pmod{5}\),什么时候 \(\equiv2\pmod{7}\)。也就是解下面的方程:

\[\begin{cases}
x_1\equiv2\pmod{3}\\
x_2\equiv3\pmod{5}\\
x_3\equiv2\pmod{7}
\end{cases}
\]

解得:

\[\begin{cases}
x_1=3k_1+2&(k_1\in\mathbb{Z})\\
x_2=5k_2+3&(k_2\in\mathbb{Z})\\
x_3=7k_3+2&(k_3\in\mathbb{Z})\\
\end{cases}
\]

但这个解毫无用处。因为我们无法直接从 \(x_1,x_2,x_3\) 求出 \(x\)。

一种常见的想法是,取 \(x=x_1+x_2+x_3\)。那我们就有结论 \(x_1+x_2\equiv2\pmod{3}\)。

这个结论显然只在 \(3\mid x_2\) 时成立。

因此我们可以得到,令 \(x_1=(5\cdot7)y_1,x_2=(3\cdot7)y_2,x_3=(3\cdot5)y_3\),则:

\[\begin{cases}
35y_1\equiv2\pmod{3}\\
21y_2\equiv3\pmod{5}\\
15y_3\equiv2\pmod{7}
\end{cases}
\]

然后发现 \(\equiv\) 右边的数字不是 \(1\) 就非常烦。我们令 \(z_1=2y_1,z_2=3y_2,z_3=2y_3\),再分别约去 \(2,3,2\) 得到:

\[\begin{cases}
35z_1\equiv1\pmod{3}\\
21z_2\equiv1\pmod{5}\\
15z_3\equiv1\pmod{7}
\end{cases}
\]

注意到 \(3\perp5\perp7\),则 \(35\perp3,21\perp5,15\perp7\)。所以存在逆元(存在 \(z_1,z_2,z_3\))。这个可以用扩展欧几里得或者线性求逆元来求出 \(z_1=2,z_2=1,z_3=1\)。

则 \(y_1=4,y_2=3,y_3=2\)。\(x_1=140,x_2,=63,x_3=30\)。则 \(x=233\)。

但是 \(233\) 并不是最小正整数解。不难发现只要 \(a\equiv b\pmod{3\cdot5\cdot7}\),那么 \(a,b\) 都是合法解。

所以最小正整数解是 \(233\bmod (3\cdot5\cdot7)=23\)。

整理

现在,我们就得到了求解下列方程组的通法:

\[\begin{cases}
x\equiv b_1\pmod{a_1}\\
x\equiv b_2\pmod{a_2}\\
\cdots\cdots\cdots\cdots\cdots\cdot\cdot\\
x\equiv b_n\pmod{a_n}\\
\end{cases}
\]

其中 \(a_1\perp a_2\perp\cdots a_n\)。

  • 求出 \(K=\prod_{i=1}^{n}a_i\)。

  • 对于 \(1 \leq i \leq n\),解关于 \(z_i\) 的方程 \(\dfrac{K}{a_i}\cdot z_i\equiv1\pmod{a_i}\)。

  • 计算 \(y_i=b_i\cdot z_i \cdot \dfrac{K}{a_i}\)。

  • 则最小整数解 \(x=\sum_{i=1}^{n}{y_i} \bmod K\)。

例题

P1495 【模板】中国剩余定理(CRT)/ 曹冲养猪

给出两个长为 \(n\) 的序列 \(a,b\)。求以下关于 \(x\) 的方程组的最小整数解:

\[\begin{cases}
x\equiv b_1\pmod{a_1}\\
x\equiv b_2\pmod{a_2}\\
\cdots\cdots\cdots\cdots\cdots\cdot\cdot\\
x\equiv b_n\pmod{a_n}\\
\end{cases}
\]

\(1 \leq n \leq 10\)

模板题。大家可以参考一下我的代码实现:

#include <bits/stdc++.h>
#define int long long
using namespace std; void exgcd(int a,int b,int &x,int &y){
if(b==0){
x=1;
y=0;
}
else{
exgcd(b,a%b,x,y);
int tmp=x;
x=y;
y=tmp-a/b*y;
}
} int n,a[15],b[15]; signed main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i]>>b[i];
int K=1,x=0;
for(int i=1;i<=n;i++) K*=a[i];
for(int i=1;i<=n;i++){
int z=0,ytxy=0,y=0;
exgcd(K/a[i],a[i],z,ytxy);
z=((z%a[i]+a[i])%a[i]);
y=b[i]*z*(K/a[i]);
x+=y;
}
cout<<((x%K+K)%K);
return 0;
}

中国剩余定理(CRT)学习笔记的更多相关文章

  1. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  2. CRT(中国剩余定理)学习笔记

    先扔个模板题.链接. 简化题意:他让我求 \(x \equiv a_i \pmod{m_i}\) 的解. 例如,\( \begin{cases} x \equiv 1 \pmod{3} \\ x \e ...

  3. 中国剩余定理 CRT

    中国剩余定理 CRT 正常版本CRT 要解的是一个很容易的东西 \[ \begin{aligned} x\equiv a_1(mod\ m_1)\\ x\equiv a_2(mod\ m_2)\\ . ...

  4. 中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结

    中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前 ...

  5. 中国剩余定理(CRT)及其扩展(EXCRT)详解

    问题背景   孙子定理是中国古代求解一次同余式方程组的方法.是数论中一个重要定理.又称中国余数定理.一元线性同余方程组问题最早可见于中国南北朝时期(公元5世纪)的数学著作<孙子算经>卷下第 ...

  6. 扩展GCD 中国剩余定理(CRT) 乘法逆元模版

    extend_gcd: 已知 a,b (a>=0,b>=0) 求一组解 (x,y) 使得 (x,y)满足 gcd(a,b) = ax+by 以下代码中d = gcd(a,b).顺便求出gc ...

  7. 扩展中国剩余定理 (ExCRT)

    扩展中国剩余定理 (ExCRT) 学习笔记 预姿势: 扩展中国剩余定理和中国剩余定理半毛钱关系都没有 问题: 求解线性同余方程组: \[ f(n)=\begin{cases} x\equiv a_1\ ...

  8. 学习笔记:中国剩余定理(CRT)

    引入 常想起在空间里见过的一些智力题,这个题你见过吗: 一堆苹果,\(3\)个\(3\)个地取剩\(1\)个,\(5\)个\(5\)个地取剩\(1\)个,\(7\)个\(7\)个地取剩\(2\)个,苹 ...

  9. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  10. 中国剩余定理(CRT)及其拓展(ExCRT)

    中国剩余定理 CRT 推导 给定\(n\)个同余方程 \[ \left\{ \begin{aligned} x &\equiv a_1 \pmod{m_1} \\ x &\equiv ...

随机推荐

  1. CentOS7 安裝DHCP服務並啟用DHCP failover

    1. 安裝dhcp服務 yum install -y dhcp 2. host1 vi /etc/dhcp/dhcpd.failover failover peer "dhcpfailove ...

  2. LVS简略介绍

    一.lvs是什么 LVS是 Linux Virtual Server 的简称,也就是Linux虚拟服务器.这是一个由章文嵩博士发起的一个开源项目,它的官方网站是 http://www.linuxvir ...

  3. centos 添加yum源失败,ping 百度没响应

    1. curl -o /etc/yum.repos.d/CentOS-Base.repo https://mirrors.aliyun.com/repo/Centos-vault-8.5.2111.r ...

  4. 《Unix/Linux系统编程》第九周学习笔记

    <Unix/Linux系统编程>第九周学习笔记 信号和中断 中断"是从I/O设备或协处理器发送到CPU的外部请求,它将CPU从正常执行转移 到中断处理.与发送给CPU的中断请求一 ...

  5. 关于npm audit fix无法修复问题的解决办法

    这两天新建项目 使用npm install的时候一直出现这个错误,使用npm audit fix 无法修复. 查询解决办法: 可以使用淘宝镜像源,会自动修复,然后下载相关依赖包 解决方法如下: 1.使 ...

  6. vue3-使用百度地图遇到的坑-地图实例化

    1.创建地图实例 原因:在使用vue3为了只定义一次地图实例,在所有方法中使用,直接使用如下定义方式: setup() { const data = reactive({ bmap: null,}) ...

  7. windows下 mstsc 远程Ubuntu 图形界面

    安装及设置xrdp ------------------------------------------------------ touch ~/installXrdp.sh  cat > ~/ ...

  8. Javaweb学习笔记第七弹

    Maven依赖范围 对于Maven的安装配置等环境准备问题,可详细参考我的前几篇博客, 网址1:https://www.cnblogs.com/liuzijin/p/16654344.html 网址2 ...

  9. 面向对象分析与设计(V3)第一章:复杂性

    书名(中):面向对象分析与设计 书名(英):Object-Oriented Analysis and Design with Applications 作者:Grady Booch等 第一部分.概念 ...

  10. 布局管理器wx.BoxSizer

    b = wx.BoxSizer( wx.VERTICAL ) b.Add(self.notebook1, 1, wx.EXPAND) self.parent.SetSizer(b) 解析以上代码原理, ...