RMQ,即区间最值查询,给定一个序列,求区间l-r的最大值、最小值。

st表求RMQ,预处理On*logn,查询O1

预处理:

void init_rmq()
{
for(rll j=1;j<=lg[n];++j)//从当前点开始的2的j次方个点
{
for(rll i=1;(i+(1<<j)-1)<=n;++i)//i+(1<<j)-1不能越界
{
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);//取最大值
}
}
}

查询:

这里l到r不一定刚好是2^j,这里要么越界,要么有重复。

我们是求最值,又不是求和,有没有重复又有什么关系呢?那我们就让他有重复的部分。

代码:

ll rmq(ll l,ll r)
{
ll k=log(r-l+1)/log(2);//处理log
return max(f[l][k],f[r-(1<<k)+1][k]);//这里有重合部分,但重合部分取最大值不影响最后结果(又不是求和)
}

一道简单的例题:

信息学奥赛一本通(C++版)在线评测系统 (ssoier.cn)

代码:

#include<bits/stdc++.h>
#define ll long long
#define rint register int
#define rll register long long
using namespace std;
const ll N=1e5+5;
ll n,m;
ll f[N][20];
int lg[N];
inline ll read()
{
ll x=0;
bool flag=false;
char ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-') flag=true;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+(ch^'0');
ch=getchar();
}
return flag?~x+1:x;
}
void init_rmq()
{
for(rll j=1;j<=lg[n];++j)//从当前点开始的2的j次方个点
{
for(rll i=1;(i+(1<<j)-1)<=n;++i)//i+(1<<j)-1不能越界
{
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);//取最大值
}
}
}
ll rmq(ll l,ll r)
{
ll k=log(r-l+1)/log(2);//处理log
return max(f[l][k],f[r-(1<<k)+1][k]);//这里有重合部分,但重合部分取最大值不影响最后结果(又不是求和)
}
int main()
{
n=read(),m=read();//n 点的个数 m 操作数
for(rll i=1;i<=n;++i)
{
f[i][0]=read();//读入数据
}
for(rint i=1;i<=n;++i)
{
lg[i]=lg[i-1]+(1<<lg[i-1]==i);//处理log
}
init_rmq();//初始化
for(rll l,r,i=1;i<=m;++i)
{
l=read(),r=read();
printf("%lld\n",rmq(l,r));//查询
}
return 0;
}

倍增求RMQ的更多相关文章

  1. 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))

    倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...

  2. 树上倍增求LCA(最近公共祖先)

    前几天做faebdc学长出的模拟题,第三题最后要倍增来优化,在学长的讲解下,尝试的学习和编了一下倍增求LCA(我能说我其他方法也大会吗?..) 倍增求LCA: father[i][j]表示节点i往上跳 ...

  3. [算法]树上倍增求LCA

    LCA指的是最近公共祖先(Least Common Ancestors),如下图所示: 4和5的LCA就是2 那怎么求呢?最粗暴的方法就是先dfs一次,处理出每个点的深度 然后把深度更深的那一个点(4 ...

  4. 【倍增】洛谷P3379 倍增求LCA

    题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...

  5. 模板 倍增维护RMQ

    倍增维护RMQ,nlogn预处理,O(1)查询 #include<bits/stdc++.h> using namespace std; const int maxn = 1e5+7; s ...

  6. hdu 2586 How far away ? 倍增求LCA

    倍增求LCA LCA函数返回(u,v)两点的最近公共祖先 #include <bits/stdc++.h> using namespace std; *; struct node { in ...

  7. 倍增求lca模板

    倍增求lca模板 https://www.luogu.org/problem/show?pid=3379 #include<cstdio> #include<iostream> ...

  8. 【题解】洛谷P4180 [BJWC2010] 严格次小生成树(最小生成树+倍增求LCA)

    洛谷P4180:https://www.luogu.org/problemnew/show/P4180 前言 这可以说是本蒟蒻打过最长的代码了 思路 先求出此图中的最小生成树 权值为tot 我们称这棵 ...

  9. 树链剖分与倍增求LCA

    树链剖分与倍增求\(LCA\) 首先我要吐槽机房的辣基供电情况,我之前写了一上午,马上就要完成的时候突然停电,然后\(GG\)成了送链剖分 其次,我没歧视\(tarjan LCA\) 1.倍增求\(L ...

随机推荐

  1. Bootstrap Blazor Table 组件(四)自定义列生成

    原文链接:https://www.cnblogs.com/ysmc/p/16223154.html Bootstrap Blazor 官方链接:https://www.blazor.zone/tabl ...

  2. 批量上传文件或者上传大文件时 gateWay报错DataBufferLimitException: Exceeded limit on max bytes to buffer : 262144

    一.描述 最近在批量上传文件时网关出现了异常,后面发现上传大文件也会出现文件超过256发生异常,异常信息如下: org.springframework.core.io.buffer.DataBuffe ...

  3. UDP协议,多道技术,进程,同步与异步,阻塞与非阻塞

    UDP协议 简介 UDP叫做用户数据报协议,是OSI七层参考模型中传输层使用的协议,他提供的是不可靠传输,既它在传输过程 中不保证数据的完整性! 端口号 UDP使用IP地址和端口号进行标识,以此将数据 ...

  4. 五、C++运算符重载,使面向对象编程更方便

    复数类CComplex 编译器做对象运算的时候,会调用对象的运算符重载函数(优先调用成员方法):如果没有成员方法,就砸全局作用域找合适的运算符重载函数 ++和--运算符是单目运算符,在参数列表里放上一 ...

  5. netty系列之:使用Jboss Marshalling来序列化java对象

    目录 简介 添加JBoss Marshalling依赖 JBoss Marshalling的使用 总结 简介 在JAVA程序中经常会用到序列化的场景,除了JDK自身提供的Serializable之外, ...

  6. 【多线程】线程优先级 Priority

    线程优先级 Priority Java提供一个线程调度器来监控程序中启动后进入就绪状态的所有线程,线程调度 器按照优先级决定应该调度哪个线程来执行. 线程的优先级用数字表示,范围从1~10. Thre ...

  7. 【多线程】线程休眠 Thread.sleep()

    线程休眠 Thread.sleep() sleep (时间) 指定当前线程阻塞的毫秒数: sleep存在异常InterruptedException: sleep时间达到后线程进入就绪状态: slee ...

  8. 【算法】冒泡排序(Bubble Sort)(一)

    冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法.它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是 ...

  9. 好客租房15-jsx中的条件渲染

    jsx中的条件渲染 场景:loding效果 条件渲染:根据条件渲染特定的jsx结构 可以使用if/else或者三元运算符和逻辑和运算符实现 //导入react import React from &q ...

  10. unity---小地图制作

    脚本控制移动 public float moveSpeed =5f; public float roundSpeed=120f; void Update() { this.transform.Tran ...