LevelDB 学习笔记2:合并

部分图片来自 RocksDB 文档

Minor Compaction

将内存数据库刷到硬盘的过程称为 minor compaction

  • 产出的 L0 层的 sstable

    • 事实上,LevelDB 不一定会将 minor compaction 产生的 sstable 放到 L0 里
  • L0 层的 sstable 可能存在 overlap
  • 如果上一次产生的 imm memtable 还没能刷盘,而新的 memtable 已写满,写入线程必须等待到 minor compaction 完成才能继续写入
    • 只允许同时存在一个 imm memtable

Minor Compaction 的流程

主要流程在 CompactMemTable()

  • 借助工具类 TableBuilder 构建 sstable 文件

    • BuildTable()
  • 选择将这个产生的 sstable 文件放到哪一层去
    • PickLevelForMemTableOutput()
    • 如果某个 sstable 文件和 L0 层没有重叠部分,就可以考虑将它扔到后面的层级里
    • 如果满足
      • 和 level + 1 层不重叠
      • 且不要和 level+ 2 有太多的重叠部分
    • 我们就可以将它扔到 level + 1 层去
    • 我们希望它能放到第二层去
      • 这样可以避免 0 -> 1 层合并的巨大 I/O 开销
    • 但我们不希望它直接扔到最后一层,这样可能带来带来的问题是
      • 如果某个 key 被重复改写,可能带来磁盘空间的浪费
      • 比如你写到 L7 中,然后再改写它时可能又在 L6 里写了一份副本,以此类推,可能每一层里都有这个 key 的副本
    • 最高可以放到 config::kMaxMemCompactLevel(默认为 2)层里去
  • 提交版本修改
    • 增加新的 sstable 文件
  • 删除 imm memtable 的日志文件

Major Compaction

  • L0 层的记录有 overlap,搜索的时候可能要遍历所有的 L0 级文件

    • 当 L0 层文件数量到达阈值(kL0_CompactionTrigger,默认值为 4)时,会被合并到 L1 层中去
    • 在没有 overlap 的层里搜索时,只需要找到 key 在哪个文件里,然后遍历这个文件就行了
    • 所以针对 L0 层的 major compaction 可以提高数据检索效率

  • major compaction 过程会消耗大量时间,为了防止用户写入速度太快,L0 级文件数量不断增长,LevelDB 设置了两个阈值

    • kL0_SlowdownWritesTrigger,默认值为 8

      • 放缓写入,每个合并写操作都会被延迟 1ms
    • kL0_StopWritesTrigger,默认值为 12
      • 写入暂停,直到后台合并线程工作完成

除了 L0 层以外,其他层级内 sstable 文件的 key 是有序且不重叠的

  • LevelDB 的写入都是 Append 的,也就是不管是修改还是删除,都是添加新的记录,因此数据库里可能存在 key 相同的多条记录

    • major compaction 也起到合并相同 key 的记录、减小空间开销的作用
  • 而且如果 L1 层文件积累的太多,L0 层文件做 major compaction 的时候,需要和大量的 L1 层文件做合并,导致 compaction 的 I/O 开销很大
    • 所以合并操作也能降低 compaction 的 I/O 开销
  • 当 Li(i > 0)层文件大小超过 \(10^i\) MB 时,也会触发 major compaction,选择至少一个 Li 层文件和 Li+1 层文件合并
    • 下面这个图来自 RocksDB 文档,所以阈值跟 LevelDB 不一样

major compaction 的作用:

  • 提高数据检索效率
  • 合并相同 key 的记录、减小空间开销的作用
  • 降低 compaction 的 I/O 开销
  • 可能发生的一种情况是,L0 合并完成后,L1 也触发合并阈值,需要合并,导致递归的合并

    • 最坏的情况是每次合并都会引起下一层触发合并

Trivial Move

  • LevelDB 做的一种优化是当满足下列条件的情况下

    • level 层的文件个数只有一个
    • level 层文件与 level+1 层文件没有重叠
    • level 层文件与 level+2 层的文件重叠部分的文件大小不超过阈值
  • 直接将 level 层的文件移动到 level+1 层去
  • 这种优化称为 trivial move

Seek Compaction

如果某个文件上,发生了多次无效检索(搜索某个 key,但没找到),我们希望对该文件做压缩

LevelDB 假设

  • 检索耗时 10ms
  • 读写 1MB 消耗 10ms(100MB/s)
  • 压缩 1MB 文件需要做 25MB 的 I/O
    • 从这次层读 1MB 数据
    • 从下一层读 10-12MB 数据
    • 写 10-12MB 数据到下一层

因此,做 25 次检索的代价等价于对 1MB 的数据做合并,也就是说,一次检索的代价等价于对 40KB 数据做合并

LevelDB 最终的选择比较保守,文件里每有 16KB 数据就允许对该文件做一次无效检索,当允许无效检索的次数耗尽,就会触发合并

文件的元数据里有一个 allowed_seeks 字段,存储的就是该文件剩余无效检索的次数

  • allowed_seeks 的初始化方式
f->allowed_seeks = static_cast<int>((f->file_size / 16384U));
if (f->allowed_seeks < 100) f->allowed_seeks = 100;
  • 每次 Get() 调用,如果检索了文件,LevelDB 就会做判断,是否检索了一个以上的文件,如果是,就减少这个文件的 allowed_seeks
  • 当文件的 allowed_seeks 减少为 0,就会触发 seek compaction

压缩计分

LevelDB 中采取计分机制来决定下一次压缩应该在哪个层内进行

  • 每次版本变动都会更新压缩计分

    • VersionSet::Finalize()
    • 计算每一层的计分,下次压缩应该在计分最大的层里进行
      • 计分最大层和最大计分会被存到当前版本的 compaction_level_compaction_score_
    • score >= 1 说明已经触发了压缩的条件,必须要做压缩
  • L0 的计分算法
    • L0 级文件数量 / L0 级压缩阈值(config::kL0_CompactionTrigger,默认为 4)
  • 其他层的计分算法
    • Li 级文件大小总和 / Li 级大小阈值
    • 大小阈值为 \(10^i\) MB

为什么 L0 层要特殊处理

  • 使用更大的 write buffer 的情况下,这样就不会做太多的 L0->L1 的合并

    • write buffer size 是指 memtable 转换为 imm memtable 的大小阈值

      • options_.write_buffer_size
    • 比如设置 write buffer 为 10MB,且 L0 层的大小阈值为 10MB,每做一次 minor compaction 就需要做一次 L0->L1 的合并,开销太大
  • L0 层文件每次读的时候都要做归并(因为 key 是有重叠的),因此我们不希望 L0 层有太多文件
    • 如果你设置一个很小的 write buffer,且使用大小阈值,就 L0 就可能堆积大量的文件

Major Compaction 的流程

准备工作

  • 判断合并类型

    • 如果 compaction_score_ > 1 做 size compaction
    • 如果是有文件 allowed_seeks == 0 而引起的合并,做 seek compaction
  • 选择合并初始文件
    • size compaction

      • 轮转

        • 初始文件的最大 key 要大于该层上次合并时,所有参与合并文件的最大 key
        • 每层上次合并的最大 key 记录在 VersionSet 的 compact_pointer_ 字段中
    • seek compaction
      • 引起 seek compaction 的那个文件

        • 也就是 allowed_seeks 归 0 的那个文件
  • 选择所有参与合并的文件
    • 总的来说就是根据文件的重叠部分不断扩大参与合并的文件范围

      • 先拓展 Li 的边界
      • 再拓展 Li+1 的边界
      • 再反过来继续拓展 Li 的边界
        • 这次拓展不应该导致 Li+1 的边界扩大(产生更多的重叠文件),否则不做这次拓展
    • 具体过程在 PickCompaction()SetupOtherInputs()
    • 关键函数有两个
      • GetOverlappingInputs()

        • 给定一个 key 的范围,选择 Li 中所有和该范围有重叠的 sstable 文件加入集合
      • AddBoundaryInputs()
        • 假设有两个 block b1=(l1, u1)b2=(l2, u2)
        • 其中 b1 的上界和 b2 的下界的 user_key 相等
          • 也就是说这两个块是相邻的
        • 如果只是合并 b1,也就是将它移动到下一层去
          • 那么后续查这条 user_key 时,从 b2 中查到后,就不会再去下一层查找
          • 如果 b2 中的数据比 b1 中的旧,那么这样查到的数据就是错误的
        • 因此 b1 和 b2 必须同时被合并

拓展边界的示例:

执行合并

  • 判断是否满足 [[#Trivial Move]] 的条件

    • 满足就做 trivial move,不再执行后续流程
  • 开始执行合并
    • 合并主要流程在 DoCompactionWork()
    • 用合并的输入文件构造 MergingIterator
    • 遍历 MergingIterator
      • 这个过程就是对输入文件做归并排序的过程
      • 如果遍历过程中发现有 imm memtable 文件存在,就会转而先做 minor compaction
        • 并且会唤醒在 MakeRoomForWrite() 中等待 minor compaction 完成的线程
    • 借助工具类 TableBuilder 构建 sstable 文件
      • 将遍历迭代器产生的 kv 对加入 builder
    • 如果当前文件大小超过阈值或和 level+2 层有太多的重叠部分
      • 完成对该文件的写入,并打开新的 TableBuilder
  • 提交版本更改
  • 调用 RemoveObsoleteFiles() 删除不再需要的文件

抛弃无用的数据项
  • 满足以下条件的数据项会被抛弃,不会加入到合并后的文件里

    • 数据项的类型是删除
    • 这个数据项比当前最老的 snapshot 还要老
    • level + 2 以上的层都不包含这个 user_key
      • 不然你把这项在合并阶段删掉了,用户读的时候就会读到错误的数据
  • 比这些数据项更老的所有相同 user_key 的数据项都会被抛弃

LevelDB 学习笔记2:合并的更多相关文章

  1. LevelDB学习笔记 (1):初识LevelDB

    LevelDB学习笔记 (1):初识LevelDB 1. 写在前面 1.1 什么是levelDB LevelDB就是一个由Google开源的高效的单机Key/Value存储系统,该存储系统提供了Key ...

  2. LevelDB学习笔记 (3): 长文解析memtable、跳表和内存池Arena

    LevelDB学习笔记 (3): 长文解析memtable.跳表和内存池Arena 1. MemTable的基本信息 我们前面说过leveldb的所有数据都会先写入memtable中,在leveldb ...

  3. LevelDB 学习笔记1:布隆过滤器

    LevelDB 学习笔记1:布隆过滤器 底层是位数组,初始都是 0 插入时,用 k 个哈希函数对插入的数字做哈希,并用位数组长度取余,将对应位置 1 查找时,做同样的哈希操作,查看这些位的值 如果所有 ...

  4. LevelDB学习笔记 (2): 整体概览与读写实现细节

    1. leveldb整体介绍 首先leveldb的数据是存储在磁盘上的.采用LSM-Tree实现,LSM-Tree把对于磁盘的随机写操作转换成了顺序写操作.这是得益于此leveldb的写操作非常快,为 ...

  5. leveldb 学习笔记之VarInt

    在leveldb在查找比较时的key里面保存key长度用的是VarInt,何为VarInt呢,就是变长的整数,每7bit代表一个数,第8bit代表是否还有下一个字节, 1. 比如小于128(一个字节以 ...

  6. leveldb学习笔记

    LevelDB由 Jeff Dean和Sanjay Ghemawat开发. LevelDb是能够处理十亿级别规模Key-Value型数据持久性存储的C++ 程序库. 特别如下: 1.LevelDb是一 ...

  7. SAS学习笔记7 合并语句(set、merge函数)

    set函数:纵向合并数据集 set语句进行纵向合并.set语句的作用是将若干个数据集依次纵向连接,并存放到data语句建立的数据集中.若set后面只有一个数据集,此时相当于复制的作用 注:data语句 ...

  8. leveldb 学习笔记之log结构与存取流程

    log文件的格式 log文件每一条记录由四个部分组成: CheckSum,即CRC验证码,占4个字节 记录长度,即数据部分的长度,2个字节 类型,这条记录的类型,后续讲解,1个字节 数据,就是这条记录 ...

  9. leetcood学习笔记-21**-合并两个有序链表

    题目描述: 方法一: # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.va ...

随机推荐

  1. CVE-2015-5531(目录遍历漏洞)

    vulhub漏洞环境搭建 https://blog.csdn.net/qq_36374896/article/details/84102101 启动docker环境 cd vulhub-master/ ...

  2. 教你识别一些sequence的相关问题

    摘要:通过一些自定义的视图或者查询语句,批量识别集群的sequence相关问题 本文分享自华为云社区<GaussDB(DWS)运维 -- sequence常见运维操作>,作者: 譡里个檔. ...

  3. 记-Windows环境下Prometheus+alertmanager+windows_exporter+mtail监控部署

    1.概述 最近因项目需要统计服务的负载情况及机器的负载情况,但是项目里面却没有相关统计而服务所在的机器也没有相关的监控,因为工期原因就选择了相对轻量级的prometheus方案.其中windows_e ...

  4. http多路复用?

    Keep-Alive: Keep-Alive解决的核心问题:一定时间内,同一域名多次请求数据,只建立一次HTTP请求,其他请求可复用每一次建立的连接通道,以达到提高请求效率的问题.这里面所说的一定时间 ...

  5. vue的seo问题?

    seo关系到网站排名, vue搭建spa做前后端分离不好做seo, 可通过其他方法解决: SSR服务端渲染: 将同一个组件渲染为服务器端的 HTML 字符串.利于seo且更快. vue-meta-in ...

  6. String s = new String("xyz");创建了几个String Object?

    两个.一个是直接量的xyz对象:另一个是通过new Sting()构造器创建出来的String对象. 通常来说,应该尽量使用直接量的String对象,这样具有更好的性能.

  7. 如何通过HibernateDaoSupport将Spring和Hibernate结合起来?

    用Spring的 SessionFactory 调用 LocalSessionFactory.集成过程分三步: 配置the Hibernate SessionFactory. 继承HibernateD ...

  8. 什么是持续集成(CI)?

    持续集成(CI)是每次团队成员提交版本控制更改时自动构建和测试代码的过程. 这鼓励开发人员通过在每个小任务完成后将更改合并到共享版本控制存储库来共 享代码和单元测试.

  9. GlusterFS(GFS) 分布式存储

    GlusterFS(GFS) 分布式存储   GFS 分布式文件系统 目录 一: GlusterFS 概述 1.1 GlusterFS 简介 1.2 GlusterFS特点 1.2.1 扩展性和高性能 ...

  10. Ueditor上传本地音频MP3

    遇到一个项目,客户要求能在编辑框中上传录音文件.用的是Ueditor编辑器,但是却不支持本地MP3上传并使用audio标签播放,只能搜索在线MP3,实在有点不方便.这里说一下怎么修改,主要还是利用原来 ...