1. 语言模型

2. Attention Is All You Need(Transformer)算法原理解析

3. ELMo算法原理解析

4. OpenAI GPT算法原理解析

5. BERT算法原理解析

6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质

 

1. 前言

谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译。传统的神经机器翻译大都是利用RNN或者CNN来作为encoder-decoder的模型基础,而谷歌最新的只基于Attention的Transformer模型摒弃了固有的定式,并没有用任何CNN或者RNN的结构。该模型可以高度并行地工作,所以在提升翻译性能的同时训练速度也特别快。

2. Transformer模型结构

Transformer的主体结构图:

2.1 Transformer的编码器解码器

模型分为编码器解码器两个部分。

  • 编码器由6个相同的层堆叠在一起,每一层又有两个支层。第一个支层是一个多头的自注意机制,第二个支层是一个简单的全连接前馈网络。在两个支层外面都添加了一个residual的连接,然后进行了layer nomalization的操作。模型所有的支层以及embedding层的输出维度都是dmodeldmodel。
  • 解码器也是堆叠了六个相同的层。不过每层除了编码器中那两个支层,解码器还加入了第三个支层,如图中所示同样也用了residual以及layer normalization。具体的细节后面再讲。

2.2 输入层

编码器和解码器的输入就是利用学习好的embeddings将tokens(一般应该是词或者字符)转化为d维向量。对解码器来说,利用线性变换以及softmax函数将解码的输出转化为一个预测下一个token的概率。

2.3 位置向量

由于模型没有任何循环或者卷积,为了使用序列的顺序信息,需要将tokens的相对以及绝对位置信息注入到模型中去。论文在输入embeddings的基础上加了一个“位置编码”。位置编码和embeddings由同样的维度都是dmodeldmodel所以两者可以直接相加。有很多位置编码的选择,既有学习到的也有固定不变的。

2.4 Attention模型

2.4.1 Scaled attention

论文中用的attention是基本的点乘的方式,就是多了一个所谓的scale。输入包括维度为dkdk的queries以及keys,还有维度为dvdv的values。计算query和所有keys的点乘,然后每个都除以dk−−√dk(这个操作就是所谓的Scaled)。之后利用一个softmax函数来获取values的权重。
实际操作中,attention函数是在一些列queries上同时进行的,将这些queries并在一起形成一个矩阵QQ同时keys以及values也并在一起形成了矩阵KK以及VV。则attention的输出矩阵可以按照下述公式计算:

Attention(Q,K,V)=softmax(QKTdk−−√)VAttention(Q,K,V)=softmax(QKTdk)V

2.4.2 Multi-Head Attention

本文结构中的Attention并不是简简单单将一个点乘的attention应用进去。作者发现先对queries,keys以及values进行hh次不同的线性映射效果特别好。学习到的线性映射分别映射到dkdk,dkdk以及dvdv维。分别对每一个映射之后的得到的queries,keys以及values进行attention函数的并行操作,生成dvdv维的output值。具体结构和公式如下。

MultiHead(Q,K,V)=Concat(head1,...,headh)MultiHead(Q,K,V)=Concat(head1,...,headh)
where:headi=Attention(QWiQ,KWiK,VWiV)where:headi=Attention(QWiQ,KWiK,VWiV)

2.4.3 模型中的attention

Transformer以三种不同的方式使用了多头attention。

  1. 在encoder-decoder的attention层,queries来自于之前的decoder层,而keys和values都来自于encoder的输出。这个类似于很多已经提出的seq2seq模型所使用的attention机制。
  2. 在encoder含有self-attention层。在一个self-attention层中,所有的keys,values以及queries都来自于同一个地方,本例中即encoder之前一层的的输出。
  3. 类似的,decoder中的self-attention层也是一样。不同的是在scaled点乘attention操作中加了一个mask的操作,这个操作是保证softmax操作之后不会将非法的values连到attention中。

2.4.4 Feed Foreword

每层由两个支层,attention层就是其中一个,而attention之后的另一个支层就是一个前馈的网络。公式描述如下。

FFN(x)=max(0,xW1+b1)W2+b2FFN(x)=max(0,xW1+b1)W2+b2

3. 总结

模型的整体框架基本介绍完了,其最重要的创新应该就是Self-Attention和Multi-Head Attention的架构。在摒弃传统CNN和RNN的情况下,还能提高表现,降低训练时间。Transformer用于机器翻译任务,表现极好,可并行化,并且大大减少训练时间。并且也给我们开拓了一个思路,在处理问题时可以增加一种结构的选择。

从Encoder-Decoder(Seq2Seq)理解Attention的本质的更多相关文章

  1. 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质

    1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原 ...

  2. seq2seq和attention应用到文档自动摘要

    一.摘要种类 抽取式摘要 直接从原文中抽取一些句子组成摘要.本质上就是个排序问题,给每个句子打分,将高分句子摘出来,再做一些去冗余(方法是MMR)等.这种方式应用最广泛,因为比较简单.经典方法有Lex ...

  3. 完全图解RNN、RNN变体、Seq2Seq、Attention机制

    完全图解RNN.RNN变体.Seq2Seq.Attention机制 本文主要是利用图片的形式,详细地介绍了经典的RNN.RNN几个重要变体,以及Seq2Seq模型.Attention机制.希望这篇文章 ...

  4. 从Seq2seq到Attention模型到Self Attention

    Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一.Seq2seq被广泛应用在机器翻译.聊天机器人甚至是图像生成文字等情境. ...

  5. 深入理解Attention机制

    要了解深度学习中的注意力模型,就不得不先谈Encoder-Decoder框架,因为目前大多数注意力模型附着在Encoder-Decoder框架下,当然,其实注意力模型可以看作一种通用的思想,本身并不依 ...

  6. Atitit 深入理解软件的本质 attilax总结 软件三原则"三次原则"是DRY原则和YAGNI原则的折

    Atitit 深入理解软件的本质 attilax总结 软件三原则"三次原则"是DRY原则和YAGNI原则的折 1.1.1. 软件的本质:抽象  1 1.2. 软件开发的过程就是不断 ...

  7. 自定义Encoder/Decoder进行对象传递

    转载:http://blog.csdn.net/top_code/article/details/50901623 在上一篇文章中,我们使用Netty4本身自带的ObjectDecoder,Objec ...

  8. 比sun.misc.Encoder()/Decoder()的base64更高效的mxBase64算法

    package com.mxgraph.online; import java.util.Arrays; /** A very fast and memory efficient class to e ...

  9. Netty自定义Encoder/Decoder进行对象传递

    转载:http://blog.csdn.net/top_code/article/details/50901623 在上一篇文章中,我们使用Netty4本身自带的ObjectDecoder,Objec ...

  10. RNN、LSTM、Seq2Seq、Attention、Teacher forcing、Skip thought模型总结

    RNN RNN的发源: 单层的神经网络(只有一个细胞,f(wx+b),只有输入,没有输出和hidden state) 多个神经细胞(增加细胞个数和hidden state,hidden是f(wx+b) ...

随机推荐

  1. [深度学习] 基于切片辅助超推理库SAHI优化小目标识别

    对象检测是迄今为止计算机视觉中最重要的应用领域.然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少.小目标物体的定义通常有两种方式.一种是绝对尺度定义 ...

  2. .Net6在Docker环境下操作Selenium.Chrome的那些坑

    .Net6中想实现对某个网址截屏,可通过Selenium模拟访问网址并实现截图. 实现 安装Nuget包 <PackageReference Include="Selenium.Chr ...

  3. Markdown最基础语法内容

    基础常用语法(大多符号后都要跟一个空格) 一.标题 1.使用 # 号可表示 1-6 级标题,一级标题对应一个 # 号,二级标题对应两个 # 号,以此类推. #不要漏了符号和内容之间的空格 一级标题 # ...

  4. Codeforces Round #844 (Div. 1 + Div. 2, based on VK Cup 2022 - Elimination Round) A-D

    比赛链接 A 题意 设计一条线路要贴着6个墙面走,从 \((a,b)\) 到 \((f,g)\) ,线路长度最短. 题解 知识点:模拟. 分类取最短即可. 时间复杂度 \(O(1)\) 空间复杂度 \ ...

  5. oracle创建全文索引(oracle text)

    drop table test.QQ_MsgRecord; CREATE TABLE test.QQ_MsgRecord ( msg_group VARCHAR2(200), msg_object V ...

  6. [BUUCTF]洞拐洞拐洞洞拐

    [BUUCTF] 洞拐洞拐洞洞拐 问题链接:https://buuoj.cn/challenges#洞拐洞拐洞洞拐 问题附件是一张图片. 一. 图片分析 查看图片,发现是由有规律的黑白像素构成的PNG ...

  7. Python读取大量Excel文件并跨文件批量计算平均值

      本文介绍基于Python语言,实现对多个不同Excel文件进行数据读取与平均值计算的方法.   首先,让我们来看一下具体需求:目前有一个文件夹,其中存放了大量Excel文件:文件名称是每一位同学的 ...

  8. 笔记:C#Quart帮助类 定时器 拿来即用

    using Quartz.Impl; using Quartz.Impl.Triggers; using System; using System.Collections.Generic; using ...

  9. 2023.1.13 [网络流24题] 餐巾计划问题 LuoguP1251

    2023.1.13 今日完成的[餐巾计划问题],是一道最小费用最大流的模板题,本人太弱在第一次使用dinic + spfa 完成此题时,也出现了许多问题,在此总结和提醒. 大致题意 一个餐厅在相继的 ...

  10. 力扣---167. 两数之和 II - 输入有序数组

    给你一个下标从 1 开始的整数数组 numbers ,该数组已按 非递减顺序排列  ,请你从数组中找出满足相加之和等于目标数 target 的两个数.如果设这两个数分别是 numbers[index1 ...