CF932G Palindrome Partition(回文自动机)

Luogu

题解时间

首先将字符串 $ s[1...n] $ 变成 $ s[1]s[n]s[2]s[n-1]... $

就变成了求将字符串全部划分为偶回文串的方案数。

建回文树大力跳$ fail $ 直接 $ dp $ 的复杂度是十分优秀的 $ O ( n ^ {2} ) $。

优化不容易想到。

考虑字符串上第 $ j $ 位为结尾的所有回文子串,毫无疑问它们在树上是一条链。

但它有个更重要的性质。

其中所有长度 $ > j / 2 $ 的子串的 $ len $ 等差。

证明有点难,但这个结论可能对做过[WC2016]论战捆竹竿的人来说十分熟悉。

然后将等差段的dp值整合到一起,每次跳就是 $ O( log_{2} n ) $。

然后就可以做了。

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
namespace RKK
{
const int N=1000011,mo=1000000007;
void doadd(int &a,int b){if((a+=b)>=mo) a-=mo;} int dlen[N],anc[N];
struct remilia{int tranc[26],len,fail;};
struct sakuya
{
remilia p[N];
int tcnt,fin;
void init()
{
tcnt=fin=1;
p[0].len=0,p[1].len=-1;
p[0].fail=p[1].fail=1;
anc[0]=1;
}
sakuya(){init();}
int match(char *s,int i,int px){return s[i-p[px].len-1]==s[i];}
void ins(char *s,int i)
{
int ch=s[i]-'a';
int npx,lpx,lpy;
lpx=fin;
while(!match(s,i,lpx)) lpx=p[lpx].fail;
if(!p[lpx].tranc[ch])
{
npx=++tcnt,p[npx].len=p[lpx].len+2;
lpy=p[lpx].fail;
while(!match(s,i,lpy)) lpy=p[lpy].fail;
p[npx].fail=p[lpy].tranc[ch];
p[lpx].tranc[ch]=npx;
dlen[npx]=p[npx].len-p[p[npx].fail].len;
anc[npx]=p[npx].fail;if(dlen[npx]==dlen[p[npx].fail]) anc[npx]=anc[p[npx].fail];
}
fin=p[lpx].tranc[ch];
}
}pam;
int n;char str[N],rts[N]; int dp[N],dg[N];
int main()
{
#ifdef RDEBUG
freopen("sample.in","r",stdin);
#endif
scanf("%s",str+1),n=strlen(str+1);
for(int i=1;i<=n>>1;i++) rts[(i<<1)-1]=str[i];
reverse(str+1,str+1+n);
for(int i=1;i<=n>>1;i++) rts[i<<1]=str[i];
dg[0]=1;
for(int i=1;i<=n;i++)
{
pam.ins(rts,i);for(int px=pam.fin;px;px=anc[px])
{
dp[px]=dg[i-pam.p[anc[px]].len-dlen[px]];
if(anc[px]!=pam.p[px].fail) doadd(dp[px],dp[pam.p[px].fail]);
if((i&1)==0) doadd(dg[i],dp[px]);
}
}
printf("%d\n",dg[n]);
return 0;
}
}
int main(){return RKK::main();}

CF932G Palindrome Partition(回文自动机)的更多相关文章

  1. 【CF932G】Palindrome Partition 回文自动机

    [CF932G]Palindrome Partition 题意:给你一个字符串s,问你有多少种方式,可以将s分割成k个子串,设k个子串是$x_1x_2...x_k$,满足$x_1=x_k,x_2=x_ ...

  2. [2019杭电多校第二场][hdu6599]I Love Palindrome String(回文自动机&&hash)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6599 题目大意为求字符串S有多少个子串S[l,r]满足回文串的定义,并且S[l,(l+r)/2]也满足 ...

  3. 2019牛客暑期多校训练营(第六场)C - Palindrome Mouse (回文自动机)

    https://ac.nowcoder.com/acm/contest/886/C 题意: 给出一个串A , 集合S里面为A串的回文字串 , 现在在集合S里面找出多少对(a,b),b为a的字串 分析: ...

  4. hdu多校第二场1009 (hdu6599) I Love Palindrome String 回文自动机/字符串hash

    题意: 找出这样的回文子串的个数:它本身是一个回文串,它的前一半也是一个回文串 输出格式要求输出l个数字,分别代表长度为1~l的这样的回文串的个数 题解: (回文自动机和回文树是一个东西) 首先用回文 ...

  5. Codeforces 932G Palindrome Partition - 回文树 - 动态规划

    题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$ ...

  6. Codeforces 932G Palindrome Partition 回文树+DP

    题意:给定一个串,把串分为偶数段 假设分为$s_1,s_2,s_3....s_k$ 求满足$ s_1=s_k,s_2=s_{ k-1 }... $的方案数模$10^9+7$ $|S|\leq 10^6 ...

  7. 2019 Multi-University Training Contest 2 I.I Love Palindrome String(回文自动机+字符串hash)

    Problem Description You are given a string S=s1s2..s|S| containing only lowercase English letters. F ...

  8. WHU 583 Palindrome ( 回文自动机 && 本质不同的回文串的个数 )

    题目链接 题意 : 给你一个串.要你将其划分成两个串.使得左边的串的本质不同回文子串的个数是右边串的两倍.对于每一个这样子的划分.其对答案的贡献就是左边串的长度.现在要你找出所有这样子的划分.并将贡献 ...

  9. HDU-6599 I Love Palindrome String(回文自动机+字符串hash)

    题目链接 题意:给定一个字符串\(|S|\le 3\times 10^5\) 对于每个 \(i\in [1,|S|]\) 求有多少子串\(s_ls_{l+1}\cdots s_r\)满足下面条件 \( ...

随机推荐

  1. JVM基础学习(二):内存分配策略与垃圾收集技术

    Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来 垃圾收集概述 Java内存模型中的堆和方法区是垃圾收集技术所需要关注的终点,因为其他的区域会跟 ...

  2. Oracle表数据或结构误删还原

    数据误删 表结构没有发生改变 --开启表字段转移,不开启无法还原 alter table 表名 enable row movement; --数据闪回 flashback table 表名 to ti ...

  3. 图解AI数学基础 | 概率与统计

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...

  4. Seastar 教程(一)

    介绍 我们在本文档中介绍的Seastar是一个 C++ 库,用于在现代多核机器上编写高效的复杂服务器应用程序. 传统上,用于编写服务器应用程序的编程语言库和框架分为两个不同的阵营:专注于效率的阵营和专 ...

  5. Apache-log4j漏洞复现

    前言:昨天晚上当我还在睡梦中时,圈内爆出了核弹级的漏洞,今天我复现一下, 再开始前我们先建立一个maven项目,将pom.xml文件导入 <?xml version="1.0" ...

  6. [题解]Codeforces Round #519 - A. Elections

    [题目] A. Elections [描述] Awruk和Elodreip参加选举,n个人投票,每个人有k张票,第i个人投a[i]张票给Elodreip,投k-a[i]张票给Awruk.求最小的k,使 ...

  7. java集合框架中contains(),containsKey()和containsValue()的用法:

    List集合的contains()方法用于判断集合中包不包含某个元素,返回值是boolean. Map集合的containsKey()和containsValue()方法和上面的相同. 示例: pub ...

  8. 聊聊第一个开源项目(内网穿透) - CProxy

    文章首发:聊聊第一个开源项目 - CProxy 作者:会玩code 初衷 最近在学C++,想写个项目练练手.对网络比较感兴趣,之前使用过ngrok(GO版本的内网穿透项目),看了部分源码,想把自己的一 ...

  9. spark conf的3种配置优先级

    在SparkConf上设置的属性具有最高的优先级,其次是传递给spark-submit或者spark-shell的属性值,最后是spark-defaults.conf文件中的属性值

  10. (第二章第四部分)TensorFlow框架之TFRecords数据的存储与读取

    系列博客链接: (第二章第一部分)TensorFlow框架之文件读取流程:https://www.cnblogs.com/kongweisi/p/11050302.html (第二章第二部分)Tens ...