Spark学习笔记--Graphx
浅谈Graphx: http://blog.csdn.net/shangwen_/article/details/38645601
Pregel: http://blog.csdn.net/shangwen_/article/details/38479835
Bagel: http://ju.outofmemory.cn/entry/712
Graphx的主要接口:
基本信息接口(numEdges , num Vertices , degrees(in/out) )
聚合操作 (mapVertices , mapEdges , mapTriplets)
转换接口 (mapReduceTriplets , collectNeighbors)
结构操作 (reverse , subgraph , mask , groupEdges)
缓存操作 (cache , unpersistVertices)
要点:
每个图由3个RDD组成
| 名称 | 对应RDD | 包含的属性 | 
| Vertices | VertexRDD | ID、点属性 | 
| Edges | EdgeRDD | 源顶点的ID,目标顶点的ID,边属性 | 
| Triplets | 源顶点ID,源顶点属性,边属性,目标顶点ID,目标顶点属性 | 
Triplets其实是对Vertices和Edges做了join操作
点分割、边分割
应用:
基于最大连通图的社区发现
基于三角形计数的关系衡量
基于随机游走的用户属性传播
注意:
GraphX通过引入*Resilient Distributed Property Graph*(一种点和边都带属性的有向多图)扩展了Spark RDD这种抽象数据结构,这种Property Graph拥有两种Table和Graph两种视图(及视图对应的一套API),而只有一份物理存储。
Table视图将视图看成Vertex Property Table和Edge Property Table等的组合,这些组合继承了Spark RDD的API(filter,map等)。
Graph视图上包括reverse/subgraph/mapV(E)/joinV(E)/mrTriplets等操作。
Graph上的函数:(官网)
/** Summary of the functionality in the property graph */
class Graph[VD, ED] {
// Information about the Graph ===================================================================
val numEdges: Long
val numVertices: Long
val inDegrees: VertexRDD[Int]
val outDegrees: VertexRDD[Int]
val degrees: VertexRDD[Int]
// Views of the graph as collections =============================================================
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
val triplets: RDD[EdgeTriplet[VD, ED]]
// Functions for caching graphs ==================================================================
def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED]
def cache(): Graph[VD, ED]
def unpersistVertices(blocking: Boolean = true): Graph[VD, ED]
// Change the partitioning heuristic ============================================================
def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED]
// Transform vertex and edge attributes ==========================================================
def mapVertices[VD2](map: (VertexID, VD) => VD2): Graph[VD2, ED]
def mapEdges[ED2](map: Edge[ED] => ED2): Graph[VD, ED2]
def mapEdges[ED2](map: (PartitionID, Iterator[Edge[ED]]) => Iterator[ED2]): Graph[VD, ED2]
def mapTriplets[ED2](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
def mapTriplets[ED2](map: (PartitionID, Iterator[EdgeTriplet[VD, ED]]) => Iterator[ED2])
: Graph[VD, ED2]
// Modify the graph structure ====================================================================
def reverse: Graph[VD, ED]
def subgraph(
epred: EdgeTriplet[VD,ED] => Boolean = (x => true),
vpred: (VertexID, VD) => Boolean = ((v, d) => true))
: Graph[VD, ED]
def mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]
def groupEdges(merge: (ED, ED) => ED): Graph[VD, ED]
// Join RDDs with the graph ======================================================================
def joinVertices[U](table: RDD[(VertexID, U)])(mapFunc: (VertexID, VD, U) => VD): Graph[VD, ED]
def outerJoinVertices[U, VD2](other: RDD[(VertexID, U)])
(mapFunc: (VertexID, VD, Option[U]) => VD2)
: Graph[VD2, ED]
// Aggregate information about adjacent triplets =================================================
def collectNeighborIds(edgeDirection: EdgeDirection): VertexRDD[Array[VertexID]]
def collectNeighbors(edgeDirection: EdgeDirection): VertexRDD[Array[(VertexID, VD)]]
def aggregateMessages[Msg: ClassTag](
sendMsg: EdgeContext[VD, ED, Msg] => Unit,
mergeMsg: (Msg, Msg) => Msg,
tripletFields: TripletFields = TripletFields.All)
: VertexRDD[A]
// Iterative graph-parallel computation ==========================================================
def pregel[A](initialMsg: A, maxIterations: Int, activeDirection: EdgeDirection)(
vprog: (VertexID, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexID,A)],
mergeMsg: (A, A) => A)
: Graph[VD, ED]
// Basic graph algorithms ========================================================================
def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double]
def connectedComponents(): Graph[VertexID, ED]
def triangleCount(): Graph[Int, ED]
def stronglyConnectedComponents(numIter: Int): Graph[VertexID, ED]
}
pregel函数参数解释:
VD:顶点的数据类型。
ED:边的数据类型
A:Pregel message的类型。
graph:输入的图
initialMsg:在第一次迭代的时候顶点收到的消息。
maxIterations:迭代的次数
vprog:用户定义的顶点程序运行在每一个顶点中,负责接收进来的信息,和计算新的顶点值。在第一次迭代的时候,所有的顶点程序将会被默认的defaultMessage调用,在次轮迭代中,顶点程序只有接收到message才会被调用。
sendMsg:用户提供的函数,应用于边缘顶点在当前迭代中接收message
mergeMsg:用户提供定义的函数,将两个类型为A的message合并为一个类型为A的message。(thisfunction must be commutative and associative and ideally the size of A shouldnot increase)
示例:
import org.apache.spark.graphx._
// Import random graph generation library
import org.apache.spark.graphx.util.GraphGenerators
// A graph with edge attributes containing distances
val graph: Graph[Long, Double] = GraphGenerators.logNormalGraph(sc, numVertices = 100).mapEdges(e => e.attr.toDouble)
val sourceId: VertexId = 42 // The ultimate source
// Initialize the graph such that all vertices except the root have distance infinity.
val initialGraph = graph.mapVertices((id, _) => if (id == sourceId) 0.0 else Double.PositiveInfinity)
val sssp = initialGraph.pregel(Double.PositiveInfinity)(
(id, dist, newDist) => math.min(dist, newDist), // Vertex Program
triplet => { // Send Message
if (triplet.srcAttr + triplet.attr < triplet.dstAttr) {
Iterator((triplet.dstId, triplet.srcAttr + triplet.attr))
} else {
Iterator.empty
}
},
(a,b) => math.min(a,b) // Merge Message
)
println(sssp.vertices.collect.mkString("\n"))
Spark学习笔记--Graphx的更多相关文章
- spark学习笔记总结-spark入门资料精化
		
Spark学习笔记 Spark简介 spark 可以很容易和yarn结合,直接调用HDFS.Hbase上面的数据,和hadoop结合.配置很容易. spark发展迅猛,框架比hadoop更加灵活实用. ...
 - Spark学习笔记-GraphX-1
		
Spark学习笔记-GraphX-1 标签: SparkGraphGraphX图计算 2014-09-29 13:04 2339人阅读 评论(0) 收藏 举报 分类: Spark(8) 版权声明: ...
 - Spark学习笔记0——简单了解和技术架构
		
目录 Spark学习笔记0--简单了解和技术架构 什么是Spark 技术架构和软件栈 Spark Core Spark SQL Spark Streaming MLlib GraphX 集群管理器 受 ...
 - Spark学习笔记之SparkRDD
		
Spark学习笔记之SparkRDD 一. 基本概念 RDD(resilient distributed datasets)弹性分布式数据集. 来自于两方面 ① 内存集合和外部存储系统 ② ...
 - Spark学习笔记2(spark所需环境配置
		
Spark学习笔记2 配置spark所需环境 1.首先先把本地的maven的压缩包解压到本地文件夹中,安装好本地的maven客户端程序,版本没有什么要求 不需要最新版的maven客户端. 解压完成之后 ...
 - Spark学习笔记3(IDEA编写scala代码并打包上传集群运行)
		
Spark学习笔记3 IDEA编写scala代码并打包上传集群运行 我们在IDEA上的maven项目已经搭建完成了,现在可以写一个简单的spark代码并且打成jar包 上传至集群,来检验一下我们的sp ...
 - Spark学习笔记3——RDD(下)
		
目录 Spark学习笔记3--RDD(下) 向Spark传递函数 通过匿名内部类 通过具名类传递 通过带参数的 Java 函数类传递 通过 lambda 表达式传递(仅限于 Java 8 及以上) 常 ...
 - Spark学习笔记2——RDD(上)
		
目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...
 - Spark学习笔记1——第一个Spark程序:单词数统计
		
Spark学习笔记1--第一个Spark程序:单词数统计 笔记摘抄自 [美] Holden Karau 等著的<Spark快速大数据分析> 添加依赖 通过 Maven 添加 Spark-c ...
 
随机推荐
- Spark SQL Table Join(Python)
			
示例 Spark SQL注册“临时表”执行“Join”(Inner Join.Left Outer Join.Right Outer Join.Full Outer Join) 代码 fr ...
 - remastersys
 - boost 特点
			
功能强大 跨平台 开源 免费 构造精巧 C++扩展库
 - Android中完全退出当前应用系统
			
一.将统一管理Activity的类ActivityManager复制到工程里面. package com.jsmtr.www.Helper; import java.util.LinkedList; ...
 - 使用truncate命令清空当前用户所有表的所有数据
			
--批量清空当前用户所有表的所有数据 declarev_sql varchar2(2000) ;CURSOR cur is select table_name from user_tables ord ...
 - Linux UDP严重丢包问题的解决
			
测试系统在Linux上的性能发现丢包率极为严重,发210000条数据,丢包达110000之巨,丢包率超过50%.同等情形下Windows上测试,仅丢几条数据.形势严峻,必须解决.考虑可能是因为协议栈B ...
 - poj 2823 Sliding Window(单调队列)
			
/* 裸地单调队列.. 第一次写 写的好丑.... */ #include<iostream> #include<cstdio> #include<cstring> ...
 - java里面List和Array的区别是什么?
			
java里面的List和Array的区别是什么? 1:数组是定长,list是自动增长.2:数组效率高,list效率低.总结:数组牺牲功能增加效率,list牺牲效率增加功能. http://bbs.cs ...
 - asp.net微信开发第六篇----高级群发(文本)
			
说到高级群发,微信的参考资料http://mp.weixin.qq.com/wiki/14/0c53fac3bdec3906aaa36987b91d64ea.html 首先我们先来讲解一下群发文本信息 ...
 - MongoDB与PHP的添加、修改、查询、删除
			
链接数据库使用下面的代码创建一个数据库链接 <?php$connection = new Mongo(); //链接到 localhost:27017$connection = new Mong ...