与最长上升子序列相关的网络流问题:

给定一个序列 A[1..n] ,求出 A 的最长上升子序列长度。并且回答下列询问:

(1) 如果每个点只能用一次,能从 A 中取出几个最长上升子序列?

(2) 如果第 1 个点和第 n 个点可以用任意次,能从 A 中取出几个最长上升子序列?

(3) 如果每个点有一个删除代价 Bi ,最小需要花费多少代价,才能使 A 的最长上升子序列至少减少 1 ?

首先,最长上升子序列问题使用 DP 来求解,从后向前枚举 i ,求出 f[i] 表示以 i 为开头的最长上升子序列长度。最大的 f[i] 就是整个序列的最长上升子序列长度。

对于后续的 3 个问题,我们使用网络流求解:

对于序列中的每个点,我们将其拆成两个点 i 与 i' 。

对于每个 i ,如果 f[i] == Len(整个序列的最长上升子序列长度),我们就连边 S 到 i,如果 f[i] == 1,我们就连边 i' 到 T。

对于每个 i ,对于每个 (j > i) && (A[j] > A[i]) && (f[j] == f[i] - 1) ,我们从 i' 向 j 连边。

然后,我们对每个 i 到 i' 连边,并限制它的容量。如果所有的容量都限制为 1 ,就相当于每个点只能用一次。

这样,求出的最大流,就是能够取出的最长上升子序列个数。问题(1)

如果去掉 1->1' 和 n -> n' 的容量限制,就可以任意次使用这两个点。问题(2)

如果对于每个 i -> i' ,设置的容量限制为删除 i 点的代价,其余所有边都是正无穷的容量,那么就相当于,割掉一些 i 到 i' 的边。使得没有从 S 到 T 的路径且花费最少。

这样就是一个最小割模型了,还是求最大流。问题(3)

[OI笔记] 最长上升子序列与网络流建模的更多相关文章

  1. Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流)

    Libre 6005 「网络流 24 题」最长递增子序列 / Luogu 2766 最长递增子序列问题(网络流,最大流) Description 问题描述: 给定正整数序列x1,...,xn . (1 ...

  2. P2766 最长不下降子序列问题 网络流

    link:https://www.luogu.org/problemnew/show/P2766 题意 给定正整数序列x1,...,xn . (1)计算其最长不下降子序列的长度s. (2)计算从给定的 ...

  3. Cogs 731. [网络流24题] 最长递增子序列(最大流)

    [网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,-, xn. ( ...

  4. COGS731 [网络流24题] 最长递增子序列(最大流)

    给定正整数序列x1,..., xn (n<=500).(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的序列中多次使用x1和 ...

  5. 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)

    From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...

  6. 【刷题】LOJ 6005 「网络流 24 题」最长递增子序列

    题目描述 给定正整数序列 \(x_1 \sim x_n\) ,以下递增子序列均为非严格递增. 计算其最长递增子序列的长度 \(s\) . 计算从给定的序列中最多可取出多少个长度为 \(s\) 的递增子 ...

  7. 【PowerOJ1741&网络流24题】最长递增子序列问题(最大流)

    题意: 思路: [问题分析] 第一问时LIS,动态规划求解,第二问和第三问用网络最大流解决. [建模方法] 首先动态规划求出F[i],表示以第i位为开头的最长上升序列的长度,求出最长上升序列长度K. ...

  8. codevs1906 最长递增子序列问题

    题目描述 Description 给定正整数序列x1,..... , xn  .(1)计算其最长递增子序列的长度s.(2)计算从给定的序列中最多可取出多少个长度为s的递增子序列.(3)如果允许在取出的 ...

  9. poj1836--Alignment(dp,最长上升子序列变形)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13319   Accepted: 4282 Descri ...

随机推荐

  1. TCPDUMP Command Examples

    tcpdump command is also called as packet analyzer. tcpdump command will work on most flavors of unix ...

  2. haproxy部署及配置

    HAProxy介绍 (1)HAProxy 是一款提供高可用性.负载均衡以及基于TCP(第四层)和HTTP(第七层)应用的代理软件,支持虚拟主机,它是免费.快速并且可靠的一种解决方案. HAProxy特 ...

  3. mysql数据库时间、字符串类型互转

    时间格式转换: select DATE_FORMAT(NOW(),"%y-%m-%d %H:%i:%s") 字符串转时间: select STR_TO_DATE("201 ...

  4. div置于页面底部

    一直对于页面置底有一些困惑,下面这个例子不知道能不能解决 <!DOCTYPE html> <html lang="en"> <head> < ...

  5. Discuz!nt整合心得

    最近研究了下Discuz!nt的整合,因为是网上找的实例,有个地方的写错了,导致纠结了一整天,这里分享出来. Discuz!nt提供了整合工具DiscuzToolkit,用于调用Discuz!nt A ...

  6. VIEW层AJAX提交表单到Controller的实体

    在MVC环境中,AJAX方式添加一个对象,这个对象在Models中是一个视图模型,在前台显示时是这样的代码: <%using (Html.BeginForm())      { %>    ...

  7. Timestamp的作用及与字符串的相互转换 .

    一.Timestamp的介绍 每一个数据库都有一个计数器,这个计数器记录着数据行的插入.更新行为.如果我们为一个表中增加 timestamp 列,那么,该列将记录每一个数据行的计数器值.假如数据库中当 ...

  8. 10个你可能不知道的JavaScript小技巧

    1.变量转换 看起来很简单,但据我所看到的,使用构造函数,像Array()或者Number()来进行变量转换是常用的做法.始终使用原始数据类型(有时也称为字面量)来转换变量,这种没有任何额外的影响的做 ...

  9. [USACO1.1.4]坏掉的项链Broken Necklace

    P1203 [USACO1.1]坏掉的项链Broken Necklace 标签 搜索/枚举 USACO 难度 普及- 题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N&l ...

  10. bzoj1068:[SCOI2007]压缩

    思路:区间dp,设状态f[l][r][bo]表示区间[l,r]的答案,bo=1表示该区间可以放M也可以不放M,bo=0表示该区间不能放M,并且对于任意一个状态f,l和l-1之间均有一个M,于是就可以进 ...