在连续随机变量这部分,有一种特殊的随机变量X,对于X所有可能取值,P(X)都相等,我们称其为均匀随机变量。

基于均匀随机变量的定义,我们容易看到,其密度函数f(x)必然是一条平行于x轴的直线,因为这样才能够保证如下等式成立。

对于X∈[a,b]的随机变量,我们能够直接得到其密度函数是f(x)=1/(b-a),x∈[a,b].

下面我们来看一个均匀随机变量的例子。

Q:向一个圆当中随机取一条弦,这条弦比该圆内接正三角形的边长要长的概率是多少?

分析:这其实是1889年法国数学家贝特朗提出的贝特朗悖论。

按照一般解决概率问题的策略,我们首相应该给出样本空间。

法一:样本空间Ω1={x|x为弦到圆心的距离}

法二:样本空间Ω2={x|x过弦端点的切线和弦围成的角度}

容易看到,对于不同的样本空间的定义方法,最终得到的结果是不同的。对于法一是1/2,对于法二的概率是1/3。

Q2(uva 12230):

给出A、B两点之间的距离,以及两点之间n条河的坐标、宽度以及该河上自动船的速度(河均与A、B两点连线垂直),人在平地行进的速度是1,人从A到B所需的时间的期望(船的停泊完全随机)。

分析:这道问题基于期望的数学概念,突破口就是找到均匀分布这个分布模型。我们先从任意一条河分析起,过该条河的最短时间是L/v,也就是说已到达这条河的岸边,船也刚好到岸,而过该条河最长时间是3L/v,也就是说刚到达这条河的岸边,船刚好开走,也就是说设随机变量X表示过该条河的时间,那么X∈[L/v , 3L/v],题目中又说船的停泊完全随机,因此X符合[L/v,3L/v]的均匀分布,那么易得,过该河的时间期望E[X]=2L/v.

对于剩余n-1条河的时间期望,采取相同的策略。再加上陆地上行走的时间D-sum(L)即可。

《A First Course in Probability》-chaper5-连续型随机变量-均匀随机变量的更多相关文章

  1. 【概率论与数理统计】小结4 - 一维连续型随机变量及其Python实现

    注:上一小节总结了离散型随机变量,这个小节总结连续型随机变量.离散型随机变量的可能取值只有有限多个或是无限可数的(可以与自然数一一对应),连续型随机变量的可能取值则是一段连续的区域或是整个实数轴,是不 ...

  2. 连续型变量的推断性分析——t检验

    连续型变量的推断性分析方法主要有t检验和方差分析两种,这两种方法可以解决一些实际的分析问题,下面我们分别来介绍一下这两种方法 一.t检验(Student's t test) t检验也称student ...

  3. 常用连续型分布介绍及R语言实现

    常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数 ...

  4. seaborn 数据可视化(一)连续型变量可视化

    一.综述 Seaborn其实是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,图像也更加美观,本文基于seaborn官方API还有自己的一些理解.   1.1.样式控制: ...

  5. 处理离散型特征和连续型特征共存的情况 归一化 论述了对离散特征进行one-hot编码的意义

    转发:https://blog.csdn.net/lujiandong1/article/details/49448051 处理离散型特征和连续型特征并存的情况,如何做归一化.参考博客进行了总结:ht ...

  6. 2×c列联表|多组比例简式|卡方检验|χ2检验与连续型资料假设检验

    第四章 χ2检验 χ2检验与连续型资料假设检验的区别? 卡方检验的假设检验是什么? 理论值等于实际值 何条件下卡方检验的需要矫正?如何矫正? 卡方检验的自由度如何计算? Df=k-1而不是n-1 卡方 ...

  7. 【书签】连续型特征的归一化和离散特征的one-hot编码

    1. 连续型特征的常用的归一化方法.离散型特征one-hot编码的意义 2. 度量特征之间的相关性:余弦相似度和皮尔逊相关系数

  8. R语言做条形图时候,离散变量和连续型变量的区别

    1)条形图 条形图或许是最常用图形,常用来展示分类(different categories on the x-axis)和数值(numeric values on the y-axis)之间的关系. ...

  9. MT【203】连续型的最值

    (北大自招)已知$-6\le x_i\le 10 (i=1,2,\cdots,10),\sum\limits_{i=1}^{10}x_i=50,$当$\sum\limits_{i=1}^{10}x^2 ...

随机推荐

  1. java I/O的基本使用

    1.什么是I/O a.I/O也称为:输入输出,可以理解为In,Out b.I/O流:读取键盘键入的字符,硬盘上的文件 c.处理数据的类型分类:字节流.字符流 字节流:以Stream结尾的,可以处理图片 ...

  2. JSP自定义标签库

    总所周知,JSP自定义标签库,主要是为了去掉JSP页面中的JAVA语句 此处以格式化输出时间戳为指定日期格式为例,简单介绍下JSP自定义标签的过程. 编写标签处理类(可继承自javax.servlet ...

  3. ASP 调用dll(VB)及封装dll实例

    ASP调用dll及封装dll实例,封装为dll可以提供运行效率,加密代码. 打开VB6,新建ActiveX DLL 2.在工程引用中加入Microsoft Active Server Pages Ob ...

  4. 网站如何防Session冒名顶替和cookie防篡改

    做网站难免要面对安全性的问题,诸如sql注入拉,cookie冒名拉,等等,sql注入算是老生常谈,翻翻旧账有不少优秀的帖子在说明这个问题,所以我们来说说Session冒名顶替的风险以及应对的办法. 首 ...

  5. PHP 进行统一邮箱登陆的代理实现(swoole)

    在工作的过程中,经常会有很多应用有发邮件的需求,这个时候需要在每个应用中配置smtp服务器.一旦公司调整了smtp服务器的配置,比如修改了密码等,这个时候对于维护的人员来说要逐一修改应用中smtp的配 ...

  6. Alljoyn 概述(2)

    AllJoyn 基本概念 • 总线(Bus) – 实现P2P通信的基础 – AllJoyn 的底层协议类似于D-Bus,相当于是跨设备分布式的 D-Bus • 总线附件(Bus Attachment) ...

  7. 《zip命令》-linux命令五分钟系列之九

    本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc 希望您能通过捐款的方式支持Linux大棚博客的运行和发展.请见“关于捐款” == ...

  8. Javascript参数传递中值和引用的一种理解

    值(value)和引用(reference)是各种编程语言老生常谈的话题,js也不例外. 我将剖析一个例子的实际运行过程,跟大家分享我对js参数传递中的值和引用的理解. 参考官网数据类型的两种分类,本 ...

  9. 批处理文件安装与卸载Windows服务

    //安装Windows服务 将RECPost.exe和RECPostService替换成自己的项目名称和服务名称,并将文件保存成bat格式.其中%cd%是获取相对路径 @echo off set fi ...

  10. ubuntu更新源

    源一定要找对应的版本 14.04对应 trusty deb http://mirrors.163.com/ubuntu/ trusty main restricted universe multive ...