POJ_2115_扩展欧几里德
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 23673 | Accepted: 6540 |
Description
for (variable = A; variable != B; variable += C)
statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
Input
The input is finished by a line containing four zeros.
Output
Sample Input
3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0
Sample Output
0
2
32766
FOREVER
参考题解:http://blog.csdn.net/lyy289065406/article/details/6648546
利用了 k位存储系统 的数据特性进行循环。
例如int型是16位的,那么int能保存2^16个数据,即最大数为65535(本题默认为无符号),
当循环使得i超过65535时,则i会返回0重新开始计数
如i=65534,当i+=3时,i=1
其实就是 i=(65534+3)%(2^16)=1
有了这些思想,设对于某组数据要循环x次结束,那么本题就很容易得到方程:
x=[(B-A+2^k)%2^k] /C
即 Cx=(B-A)(mod 2^k) 此方程为 模线性方程,本题就是求X的值。
下面将结合《算法导论》第2版进行简述,因此先把上面的方程变形,统一符号。
令a=C
b=B-A
n=2^k
那么原模线性方程变形为:
ax=b (mod n)
该方程有解的充要条件为 gcd(a,n) | b ,即 b% gcd(a,n)==0
令d=gcd(a,n)
有该方程的 最小整数解为 x = e (mod n/d)
其中e = [x0 mod(n/d) + n/d] mod (n/d) ,x0为方程的最小解
那么原题就是要计算b% gcd(a,n)是否为0,若为0则计算最小整数解,否则输出FOREVER
当有解时,关键在于计算最大公约数 d=gcd(a,n) 与 最小解x0
参考《算法导论》,引入欧几里得扩展方程 d=ax+by ,
通过EXTENDED_EUCLID算法(P571)求得d、x、y值,其中返回的x就是最小解x0,求d的原理是辗转相除法(欧几里德算法)
再利用MODULAR-LINEAR-EQUATION-SOLVER算法(P564)通过x0计算x值。注意x0可能为负,因此要先 + n/d 再模n/d。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define LL long long LL x,y;
LL e_gcd(LL a,LL b)
{
if(b==)
{
x=;
y=;
return a;
}
LL r=e_gcd(b,a%b);
LL t=x;
x=y;
y=t-a/b*y;
return r;
} int main()
{
LL A,B,C,k;
while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k)!=EOF)
{
LL a=C;
LL n=1ll;
//cout<<n<<endl;
LL b=B-A;
if(A+B+C+k==)
break;
for(int i=; i<k; i++)
n<<=;
LL g=e_gcd(a,n);
if(b%g)
{
printf("FOREVER\n");
continue;
}
LL t=b/g;
x*=t;
x=(x%(n/g)+(n/g))%(n/g);
printf("%I64d\n",x);
}
return ;
}
POJ_2115_扩展欧几里德的更多相关文章
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
- HDU 1576 A/B【扩展欧几里德】
设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> ...
随机推荐
- bupt summer training for 16 #3 ——构造
https://vjudge.net/contest/172464 后来补题发现这场做的可真他妈傻逼 A.签到傻逼题,自己分情况 #include <cstdio> #include &l ...
- ReportNG 替换testng获得测试报告
1.导入reportng相关jar包
- 无管理员帐号的WIN7,如果使用自己的JDK版本?
因为公司的电脑只有普通权限, 而且JDK版本低了. 那我只好用BAT脚本来导入自己的环境啦,毕竟每次在CMD窗口输入太繁琐. set JAVA_HOME=D:\JDK8 set CLASSPATH=D ...
- django book chapter 2
Django’s optional GIS (Geographic Information Systems) support requires Python 2.5 to 2.7. 这里提到了djan ...
- C语言实现的lisp解析器介绍
近期.由于Perl而学习函数式编程, 再进一步学习lisp, 真是一学习就发现自己的渺小. 无意中找到了一个很easy的C语言版的, lisp解析器. 代码非常短, 却非常见功底, 涨姿势了. 附带还 ...
- c语言文件包含
文件包含是指一个C语言源程序中将另一个C语言源程序包含进来,通过include预处理指令实现. 一般形式: #include”被包含文件名” 或#include<被包含文件名> 2. 作 ...
- 动态配置 JBOSS ( eap 6.2 ) 数据源
操作环境 windows + jboss eap 6.2 + MyEclipse 10.0 项目用的是jboss eap 6.2,作为Red公司升级后的eap稳定版. 相比之前的 AS 系列,不管是安 ...
- oracle强化练习之单行函数
1. 显示dname和loc中间用-分隔 Select dname ||'-'|| loc From dept; 2. 将部门名称左填充为10位 Select lpad( dnam ...
- jenkins下载插件失败解决办法
- 体验决定销量,真假4K争论仅仅是忽悠人而已
随着4K电视越来越多.网上关于真假4K电视的争论也越来越激烈,RGB与RGBW的死掐也进入了白热化阶段.从某种意义上讲.真假4K话题是4K电视市场竞争加剧的必定结果.并且这场争论已经严重影响了 ...