POJ_2115_扩展欧几里德
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 23673 | Accepted: 6540 |
Description
for (variable = A; variable != B; variable += C)
statement;
I.e., a loop which starts by setting variable to value A and while variable is not equal to B, repeats statement followed by increasing the variable by C. We want to know how many times does the statement get executed for particular values of A, B and C, assuming that all arithmetics is calculated in a k-bit unsigned integer type (with values 0 <= x < 2k) modulo 2k.
Input
The input is finished by a line containing four zeros.
Output
Sample Input
3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0
Sample Output
0
2
32766
FOREVER
参考题解:http://blog.csdn.net/lyy289065406/article/details/6648546
利用了 k位存储系统 的数据特性进行循环。
例如int型是16位的,那么int能保存2^16个数据,即最大数为65535(本题默认为无符号),
当循环使得i超过65535时,则i会返回0重新开始计数
如i=65534,当i+=3时,i=1
其实就是 i=(65534+3)%(2^16)=1
有了这些思想,设对于某组数据要循环x次结束,那么本题就很容易得到方程:
x=[(B-A+2^k)%2^k] /C
即 Cx=(B-A)(mod 2^k) 此方程为 模线性方程,本题就是求X的值。
下面将结合《算法导论》第2版进行简述,因此先把上面的方程变形,统一符号。
令a=C
b=B-A
n=2^k
那么原模线性方程变形为:
ax=b (mod n)
该方程有解的充要条件为 gcd(a,n) | b ,即 b% gcd(a,n)==0
令d=gcd(a,n)
有该方程的 最小整数解为 x = e (mod n/d)
其中e = [x0 mod(n/d) + n/d] mod (n/d) ,x0为方程的最小解
那么原题就是要计算b% gcd(a,n)是否为0,若为0则计算最小整数解,否则输出FOREVER
当有解时,关键在于计算最大公约数 d=gcd(a,n) 与 最小解x0
参考《算法导论》,引入欧几里得扩展方程 d=ax+by ,
通过EXTENDED_EUCLID算法(P571)求得d、x、y值,其中返回的x就是最小解x0,求d的原理是辗转相除法(欧几里德算法)
再利用MODULAR-LINEAR-EQUATION-SOLVER算法(P564)通过x0计算x值。注意x0可能为负,因此要先 + n/d 再模n/d。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stdlib.h>
using namespace std;
#define LL long long LL x,y;
LL e_gcd(LL a,LL b)
{
if(b==)
{
x=;
y=;
return a;
}
LL r=e_gcd(b,a%b);
LL t=x;
x=y;
y=t-a/b*y;
return r;
} int main()
{
LL A,B,C,k;
while(scanf("%I64d%I64d%I64d%I64d",&A,&B,&C,&k)!=EOF)
{
LL a=C;
LL n=1ll;
//cout<<n<<endl;
LL b=B-A;
if(A+B+C+k==)
break;
for(int i=; i<k; i++)
n<<=;
LL g=e_gcd(a,n);
if(b%g)
{
printf("FOREVER\n");
continue;
}
LL t=b/g;
x*=t;
x=(x%(n/g)+(n/g))%(n/g);
printf("%I64d\n",x);
}
return ;
}
POJ_2115_扩展欧几里德的更多相关文章
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
- HDU 1576 A/B【扩展欧几里德】
设A/B=x,则A=Bx n=A%9973=A-9973*y=Bx-9973*y 用扩展欧几里德求解 #include<stdio.h> #include<string.h> ...
随机推荐
- python基础 条件和循环
Python简介 python的创始人为吉多·范罗苏姆(Guido van Rossum).1989年的圣诞节期间,吉多·范罗苏姆为了在阿姆斯特丹打发时间,决心开发一个新的脚本解释程序,作为ABC语言 ...
- 垂直相邻margin合并解决方法
块级元素的垂直相邻外边距会合并,水平边距永远不会重合. 行内元素实际上不占上下外边距,左右外边距也不会合并.浮动元素的外边距也不会合并. 外边距重叠的意义 外边距的重叠只产生在普通流文档的上下外边距之 ...
- Flume基本概念
1 Apache Flume 1.1 概述 Flume是Cloudera提供的一个高可用,高可靠的,分布式的海量日志采集.聚合和传输的软件. Flume的核心是把数据从 ...
- hdu_1040_As Easy As A+B_201308191751
As Easy As A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- Hibernate注解开发教程
目录 第一章 类级别注解 1-1 本章简介 一.Hibernate注解简介 二.JPA与Hibernate的关系 三.Hibernate注解的分类 1-2 准备工作 1-3 @Entity注解 1-4 ...
- ipcs命令学习
参考这篇 http://blog.csdn.net/pyjfoot/article/details/7989097 ipcs -m -s -q 分别对应集中ipc ipcs -l 显示limits: ...
- 发现百度开源一个好东西,Echarts统计报表前段框架
1,如今数据越来越重要了 可是数据报表的可视化展示一直是个问题. 如今好了.有Echarts能够解决一部分数据展示的问题. http://echarts.baidu.com/index.html 类似 ...
- 项目记录23--unity-tolua框架MediatorManager
我还存在!.!!! ! ! 这个类是管理全部模块,没什么好说就是个单例,之后还须要UIManager,SceneManager,DataManager... .慢慢来.不是还要上班做死的嘛,坑爹. M ...
- poj2594——最小路径覆盖
Description Have you ever read any book about treasure exploration? Have you ever see any film about ...
- GROUPPING和ROLLUP的基本知识
1.GROUPPING 是一个聚合函数,它产生一个附加的列,当用 CUBE 或 ROLLUP 运算符添加行时,附加的列输出值为1,当所添加的行不是由 CUBE 或 ROLLUP 产生时,附加列值为0. ...