Problem description

Oleg the bank client checks share prices every day. There are n share prices he is interested in. Today he observed that each second exactly one of these prices decreases by k rubles (note that each second exactly one price changes, but at different seconds different prices can change). Prices can become negative. Oleg found this process interesting, and he asked Igor the financial analyst, what is the minimum time needed for all n prices to become equal, or it is impossible at all? Igor is busy right now, so he asked you to help Oleg. Can you answer this question?

Input

The first line contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109) — the number of share prices, and the amount of rubles some price decreases each second.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the initial prices.

Output

Print the only line containing the minimum number of seconds needed for prices to become equal, of «-1» if it is impossible.

Examples

Input

3 3
12 9 15

Output

3

Input

2 2
10 9

Output

-1

Input

4 1
1 1000000000 1000000000 1000000000

Output

2999999997

Note

Consider the first example.

Suppose the third price decreases in the first second and become equal 12 rubles, then the first price decreases and becomes equal 9 rubles, and in the third second the third price decreases again and becomes equal 9 rubles. In this case all prices become equal 9 rubles in 3 seconds.

There could be other possibilities, but this minimizes the time needed for all prices to become equal. Thus the answer is 3.

In the second example we can notice that parity of first and second price is different and never changes within described process. Thus prices never can become equal.

In the third example following scenario can take place: firstly, the second price drops, then the third price, and then fourth price. It happens 999999999 times, and, since in one second only one price can drop, the whole process takes 999999999 * 3 = 2999999997 seconds. We can note that this is the minimum possible time.

解题思路:题目的意思就是输入一个n(表示有n个数)和一个公差k,其中n个数中最小值为minval,要求除最小值外,其他数按k值递减,如果刚好都递减到最小值(此时n个数都为minval),则输出递减的总次数,否则输出-1。做法:每个数先减去最小值,查看剩下的值是否为k的倍数,如果是累加其递减次数,否则就break,输出-1,水过。

AC代码:

 #include<bits/stdc++.h>
using namespace std;
const int INF = 1e9;
int n,k,s[],minval=INF;bool flag=false;long long tims=;//注意类型是long long,避免数据溢出
int main(){
cin>>n>>k;
for(int i=;i<n;++i){cin>>s[i];minval=min(minval,s[i]);}
for(int i=;i<n;++i){
s[i]-=minval;
if(s[i]%k){flag=true;break;}
else tims+=s[i]/k;
}
if(flag)cout<<"-1"<<endl;
else cout<<tims<<endl;
return ;
}

C - Oleg and shares的更多相关文章

  1. 【codeforces 793A】Oleg and shares

    [题目链接]:http://codeforces.com/contest/793/problem/A [题意] 每次你可以对1..n中的任意一个数字进行减少k操作; 问你最后可不可能所有的数字都变成一 ...

  2. CF793A Oleg and shares 题解

    Content 有 \(n\) 支股票,第 \(i\) 支股票原价为 \(a_i\) 卢布.每秒钟可能会有任意一支股票的价格下降 \(k\) 卢布,以至于降到负数.求所有股票的价格均变得相同所要经过的 ...

  3. Tinkoff Challenge - Elimination Round 开始补题

    A. Oleg and shares time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  4. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  5. How to enable $Admin Shares in Windows 7

    Quote from: http://www.wintips.org/how-to-enable-admin-shares-windows-7/ As “Administrative shares” ...

  6. [rxjs] Shares a single subscription -- publish()

    If have an observable and you subscribe it twice, those tow subscritions have no connection. console ...

  7. How To mount/Browse Windows Shares【在linux{centos}上挂载、浏览window共享】

    How to mount remote Windows shares Contents Required packages Basic method Better Method Even-better ...

  8. Oleg Sych - » Pros and Cons of T4 in Visual Studio 2008

    Oleg Sych - » Pros and Cons of T4 in Visual Studio 2008 Pros and Cons of T4 in Visual Studio 2008 Po ...

  9. Interview with Oleg

    Interview with Oleg time limit per test 1 second memory limit per test 256 megabytes input standard ...

随机推荐

  1. 三维重建面试4:Jacobian矩阵和Hessian矩阵

    在使用BA平差之前,对每一个观测方程,得到一个代价函数.对多个路标,会产生一个多个代价函数的和的形式,对这个和进行最小二乘法进行求解,使用优化方法.相当于同时对相机位姿和路标进行调整,这就是所谓的BA ...

  2. **ML : ML中的最优化方法

    前言:         在机器学习方法中,若模型理解为决策模型,有些模型可以使用解析方法.不过更一般的对模型的求解使用优化的方法,更多的数据可以得到更多的精度.         AI中基于归纳的方法延 ...

  3. Linux 之secureCRT连接SSH

    1.登陆linux系统,打开终端命令.输入 rpm -qa |grep ssh 查找当前系统是否已经安装. 2.如果没有安装SSH软件包,可以通过yum  或rpm安装包进行安装. .3.安装好了之后 ...

  4. grep命令总结

    grep (缩写来自Globally search a Regular Expression and Print)是一种强大的文本搜索工具,它能使用特定模式匹配(包括正则表达式)搜索文本,并默认输出匹 ...

  5. python tips:小整数对象池与字符串intern

    本文为is同一性运算符的详细解释.is用于判断两个对象是否为同一个对象,具体来说是两个对象在内存中的位置是否相同. python为了提高效率,节省内存,在实现上大量使用了缓冲池技术和字符串intern ...

  6. Django F查询Q查询Only与Defel

    F/Q查询 测试表 from django.db import models # Create your models here. class MyCharField(models.Field): d ...

  7. STM32F103 rtthread工程构建

    目录 STM32F103 工程构建 1.基本情况 2.硬件连接 3.rtthread配置 4.点灯 5. 码云上git操作 STM32F103 工程构建 1.基本情况 RAM 20K ROM 64K ...

  8. S-HR快速查看shr日志

    http://localhost:6888/shr/appData.do?method=getApplicationLog&logFile=apusic.log.0&instance= ...

  9. iterm2 快捷键设置

    单词跳转 设置option+ 左右键

  10. C#第十六节课

    out using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.T ...