Linear Decoders
Sparse Autoencoder Recap
In the sparse autoencoder, we had 3 layers of neurons: an input layer, a hidden layer and an output layer. In our previous description of autoencoders (and of neural networks), every neuron in the neural network used the same activation function. In these notes, we describe a modified version of the autoencoder in which some of the neurons use a different activation function. This will result in a model that is sometimes simpler to apply, and can also be more robust to variations in the parameters.
Recall that each neuron (in the output layer) computed the following:
where a(3) is the output. In the autoencoder, a(3) is our approximate reconstruction of the input x = a(1).
Because we used a sigmoid activation function for f(z(3)), we needed to constrain or scale the inputs to be in the range[0,1], since the sigmoid function outputs numbers in the range [0,1].
引入 —— 相同的activation function ,非线性映射会导致输入和输出不等
Linear Decoder
One easy fix for this problem is to set a(3) = z(3). Formally, this is achieved by having the output nodes use an activation function that's the identity function f(z) = z, so that a(3) = f(z(3)) = z(3). 输出结点不适用sigmoid 函数
This particular activation function
is called the linear activation function。Note however that in the hidden layer of the network, we still use a sigmoid (or tanh) activation function, so that the hidden unit activations are given by (say)
, where
is the sigmoid function, x is the input, and W(1) andb(1) are the weight and bias terms for the hidden units. It is only in the output layer that we use the linear activation function.
An autoencoder in this configuration--with a sigmoid (or tanh) hidden layer and a linear output layer--is called a linear decoder.
In this model, we have
. Because the output
is a now linear function of the hidden unit activations, by varying W(2), each output unit a(3) can be made to produce values greater than 1 or less than 0 as well. This allows us to train the sparse autoencoder real-valued inputs without needing to pre-scale every example to a specific range.
Since we have changed the activation function of the output units, the gradients of the output units also change. Recall that for each output unit, we had set set the error terms as follows:
where y = x is the desired output,
is the output of our autoencoder, and
is our activation function. Because in the output layer we now have f(z) = z, that implies f'(z) = 1 and thus the above now simplifies to:
output结点
Of course, when using backpropagation to compute the error terms for the hidden layer:
hidden结点
Because the hidden layer is using a sigmoid (or tanh) activation f, in the equation above
should still be the derivative of the sigmoid (or tanh) function.
Linear Decoders的更多相关文章
- (六)6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
- CS229 6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
- Unsupervised Feature Learning and Deep Learning(UFLDL) Exercise 总结
7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到 ...
- Deep learning:三十八(Stacked CNN简单介绍)
http://www.cnblogs.com/tornadomeet/archive/2013/05/05/3061457.html 前言: 本节主要是来简单介绍下stacked CNN(深度卷积网络 ...
- [UFLDL] Basic Concept
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL St ...
- [UFLDL] Dimensionality Reduction
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html Deep learning:三十五(用NN实现数据 ...
- Deep Learning 教程翻译
Deep Learning 教程翻译 非常激动地宣告,Stanford 教授 Andrew Ng 的 Deep Learning 教程,于今日,2013年4月8日,全部翻译成中文.这是中国屌丝军团,从 ...
- ICLR 2013 International Conference on Learning Representations深度学习论文papers
ICLR 2013 International Conference on Learning Representations May 02 - 04, 2013, Scottsdale, Arizon ...
- Deep Learning基础--线性解码器、卷积、池化
本文主要是学习下Linear Decoder已经在大图片中经常采用的技术convolution和pooling,分别参考网页http://deeplearning.stanford.edu/wiki/ ...
随机推荐
- Spring MVC模式示例(未采用解耦控制器)
Product package com.mstf.bean; import java.io.Serializable; /** * Product类,封装了一些信息,包含三个属性 * @author ...
- 前端验证银行卡(Luhn校验算法)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- codeforces 544 D Destroying Roads 【最短路】
题意:给出n个点,m条边权为1的无向边,破坏最多的道路,使得从s1到t1,s2到t2的距离不超过d1,d2 因为最后s1,t1是连通的,且要破坏掉最多的道路,那么就是求s1到t1之间的最短路 用bfs ...
- objc_clear_deallocating 与弱引用
void *objc_destructInstance(id obj){ if (obj) { Class isa_gen = _object_getClass(obj); class_t *isa ...
- HYSBZ1061题解
- 如何创建一个可以使用try.....catch.......捕获的异常
代码很简单,大家一看基本上就能明白(有一定的java基础,熟悉try......catch.....finally的使用方法) package com.nokia.test1; public clas ...
- rhcs clustat
http://www.cnblogs.com/jyzhao/p/4775942.html https://access.redhat.com/documentation/zh-CN/Red_Hat_E ...
- POJ 3450--Corporate Identity【KMP && 枚举】
Corporate Identity Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 5696 Accepted: 207 ...
- Bundle捆绑压缩技术
Bundle捆绑压缩技术由命名空间System.Web.Optimization中的类提供.顾名思义,这些类是用来优化Web页面性能的,它们通过压缩文件大小,捆绑文件(把多个文件合成一个下载文件)来实 ...
- POJ 1191 记忆化搜索
(我是不会告诉你我是抄的http://www.cnblogs.com/scau20110726/archive/2013/02/27/2936050.html这个人的) 一开始没有想到要化一下方差的式 ...

is called the linear activation function。Note however that in the hidden layer of the network, we still use a sigmoid (or tanh) activation function, so that the hidden unit activations are given by (say)
, where
is the sigmoid function, x is the input, and W(1) andb(1) are the weight and bias terms for the hidden units. It is only in the output layer that we use the linear activation function.
. Because the output
is a now linear function of the hidden unit activations, by varying W(2), each output unit a(3) can be made to produce values greater than 1 or less than 0 as well. This allows us to train the sparse autoencoder real-valued inputs without needing to pre-scale every example to a specific range.
output结点
hidden结点
should still be the derivative of the sigmoid (or tanh) function.