caioj 1070 动态规划入门(二维一边推3:字符距离)(最长公共子序列拓展)
复制上一题总结
caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽
(1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符
(2)初始化问题。
一般设f[i][j]为第一个字符前i个,第二个字符前j个的最优价值
f[0][0] = 0
然后要初始化f[i][0], f[0][i]
这个时候要根据题意。
这个时候就是一个字符有,一个字符空的情况
(3)然后就可以两层for了
这个时候记住根据题目有不同的决策,取最优
一般有匹配字符和不匹配字符(如加空格)两种情况
按照题目而定
最后要注意如果是取min初值要最大,max初值最小
或者直接用其中一个决策作为初值
依然是套模型
这道题,f[i][0]和f[0][i]就是全是空格,那么就要设为k * i
决策就是匹配字符和加空格,取最优
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;
const int MAXN = 2123;
char a[MAXN], b[MAXN];
int f[MAXN][MAXN], k;
int main()
{
scanf("%s", a + 1);
int lena = strlen(a + 1);
scanf("%s", b + 1);
int lenb = strlen(b + 1);
scanf("%d", &k);
REP(i, 1, lena + 1) f[i][0] = k * i;
REP(i, 1, lenb + 1) f[0][i] = k * i;
f[0][0] = 0;
REP(i, 1, lena + 1)
REP(j, 1, lenb + 1)
{
f[i][j] = f[i-1][j-1] + abs(a[i] - b[j]);
f[i][j] = min(f[i][j], min(f[i][j-1], f[i-1][j]) + k);
}
printf("%d\n", f[lena][lenb]);
return 0;
}
caioj 1070 动态规划入门(二维一边推3:字符距离)(最长公共子序列拓展)的更多相关文章
- caioj 1069 动态规划入门(二维一边推2:顺序对齐)(最长公共子序列拓展总结)
caioj 1068是最长公共子序列裸体,秒过, 就不写博客了 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽 (1) 字符串下标从1开始,因为0用来表示 ...
- caioj 1071 动态规划入门(二维一边推4:相似基因) (最长公共子序列拓展)
复制上一题总结 caioj 1069到1071 都是最长公共字序列的拓展,我总结出了一个模型,屡试不爽 (1) 字符串下标从1开始,因为0用来表示字符为空的情况,而不是第一个字符 (2) ...
- caioj 1073 动态规划入门(三维一边推:最长公共子序列加强版(三串LCS))
三维的与二维大同小异,看代码. #include<cstdio> #include<cstring> #include<algorithm> #define REP ...
- caioj 1063 动态规划入门(一维一边推1:美元和马克)
这道题一开始我是这么想的 最后的答案肯定是某次的马克换回来的,但这个该怎么确定?? 实际上应该把范围缩小,只看最后一次和倒数第二次之间有什么联系. 可以发现,只有两种可能,最后一天换或者不换.换的话就 ...
- caioj 1067动态规划入门(一维一边推5: 乘积最大(高精度版))
因为这里涉及到乘号的个数,那么我们可以用f[i][j]表示前i个位乘号为j个时的最大乘积 那么相比上一题就是多了一层枚举多少个乘号的循环,可以得出 f[i][r] = max(f[j - 1][r - ...
- caioj 1066 动态规划入门(一维一边推4:护卫队)(分组型dp总结)
很容易想到f[i]为前i项的最优价值,但是我一直在纠结如果重量满了该怎么办. 正解有点枚举的味道. 就是枚举当前这辆车与这辆车以前的组合一组,在能组的里面取最优的. 然后要记得初始化,因为有min,所 ...
- caioj 1065 动态规划入门(一维一边推3:合唱队形)
就是最长上升子序列,但是要用n^2的算法. #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int ...
- hdu1159Common Subsequence——动态规划(最长公共子序列(LCS))
Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...
- 动态规划经典——最长公共子序列问题 (LCS)和最长公共子串问题
一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld" B = & ...
随机推荐
- GPG加密windows中使用
在Windows系统使用Gpg4win进行加密解密 2015-06-15 by u014076884 GPG,又称为GnuPG,全称是Gnu Private Guard,即GNU隐私卫士.GPG是以P ...
- App.config:配置系统未能初始化的异常
如上图所示:App.config文件是这样配置的,在后台代码”ISchedulerFactory scheduler = new StdSchedulerFactory();“中抛出了异常 经网上查资 ...
- JavaScript语法高亮库highlight.js使用
highlight.js是一款基于JavaScript的语法高亮库,目前支持125种编程语言,有63种可供选择的样式,而且能够做到语言自动识别,和目前主流的JS框架都能兼容,可以混合使用. 这款高亮库 ...
- rem 使用
html{ font-size:12px; } .btn { width: 6rem; height: 3rem; line-height: 3rem; font-size: 2rem; displa ...
- ES6学习笔记(二十二)ArrayBuffer
ArrayBuffer ArrayBuffer对象.TypedArray视图和DataView视图是 JavaScript 操作二进制数据的一个接口.它们都是以数组的语法处理二进制数据,所以统称为二进 ...
- BZOJ 3790 神奇项链(回文自动机+线段树优化DP)
我们预处理出来以i为结尾的最长回文后缀(回文自动机的构建过程中就可以求出)然后就是一个区间覆盖,因为我懒得写贪心,就写了线段树优化的DP. #include<iostream> #incl ...
- Linux命令之bc - 浮点计算器、进制转换
用途说明 Bash内置了对整数四则运算的支持,但是并不支持浮点运算,而bc命令可以很方便的进行浮点运算,当然整数运算也不再话下.手册页上说bc是An arbitrary precision calcu ...
- Qt 5.3 下OpenCV 2.4.11 开发(5)最高效的像素引用
OpenCV 提供一个函数 getTickCount() ,能够用来測量一段代码的执行时间.另一个函数 getTickFrequency() 用来返回每秒内的时钟周期.代码操作例如以下: double ...
- Irrlicht 3D Engine 笔记系列 之 教程6- 2D Graphics
作者:i_dovelemon 日期:2015 / 7 / 1 来源: CSDN 主题:2D Graphics, Irrlicht 教程翻译 本篇教程将要向大家展示怎样使用Irrlicht引擎绘制2D图 ...
- UItableView中的一些方法
有关UITableView的知识点相对照较简单,一些简单的经常使用的方法有时间在写上: 以下的几个方法假设仅仅是展示UITableView是用不到的,须要对对应的区段进行操作的时候才会用到. 方法例如 ...