[ACM] POJ 2154 Color (Polya计数优化,欧拉函数)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7630 | Accepted: 2507 |
Description
all the N colors, and the repetitions that are produced by rotation around the center of the circular necklace are all neglected.
You only need to output the answer module a given number P.
Input
Output
Sample Input
5
1 30000
2 30000
3 30000
4 30000
5 30000
Sample Output
1
3
11
70
629
Source
解题思路:
转载:http://blog.csdn.net/tsaid/article/details/7366708
题意:给出两个整数n和p,代表n个珠子,n种颜色,要求不同的项链数,翻转置换不考虑。
结果模p.
题解:
我们知道gcd(i,n)表示了循环节的个数。
比如gcd(2,6) = 2, 它的详细过程为:[1。3。5] [2。4,6]
对于随意一个循环置换,他全部循环节的长度为 n / gcd(i,n),在上面的样例中: 循环节长度 = 6 / gcd(2,6) = 3
为了方便说明。用L表示循环节的长度,显然 L | n
假设我们枚举L,求出对于每个L有多少个i, 使得 L = n / gcd (i,n), 那么我们实际上也得到了循环节个数为 n / L 的置换个数。
将L = n / gcd (i,n)转换一下得到:n / L = gcd(i,n )
设 cnt = n / L = gcd(i, n) 注:cnt表示循环节个数,L表示每个循环节的长度
由于 cnt | i, 所以可令 i = cnt * t; ( 由于0 <= i < n, 所以0 <= t < n / cnt = L )
又由于 cnt = n / L, 所以 n = cnt * L;
则 gcd ( i, n ) = gcd ( cnt*t, cnt*L ) = cnt; ①
可知当 gcd ( t, L ) = 1 时 ① 式成立。
因为 gcd ( t, L ) = 1 的个数就是 Euler(L)的个数。
所以我们能够得到结论:循环节个数为n/L的置换有Euler(L)个。
代码:
#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
bool isprime[50001];
int prime[50001];
int len=0;;
int n,p; void sieve()
{
for(int i=0;i<=50000;i++)
isprime[i]=1;
isprime[0]=isprime[1]=0;
for(int i=2;i<=50000;i++)
{
if(isprime[i])
{
prime[len++]=i;
for(int j=2*i;j<=50000;j+=i)
isprime[j]=0;
}
}
} int euler(int n)
{
int res=n;
for(int i=0;i<len&&prime[i]*prime[i]<=n;i++)
{
if(n%prime[i]==0)
{
res=res/prime[i]*(prime[i]-1);
while(n%prime[i]==0)
n/=prime[i];
}
}
if(n>1)
res=res/n*(n-1);
return res;
} int pow(int p,int n,int mod)
{
int ans=1;
p=p%mod;
while(n)
{
if(n&1)
ans=ans*p%mod;
p=p*p%mod;
n/=2;
}
return ans;
} int main()
{
sieve();
int t;
scanf("%d",&t);
while(t--)
{
int ans=0;
scanf("%d%d",&n,&p);
for(int i=1;i*i<=n;i++)
if(n%i==0)
{
ans=(ans+euler(i)%p*pow(n,n/i-1,p))%p;//注意取余的位置。 euler(i)%p不取余就WA
if(i*i==n)//仅仅要一个i就能够了
break;
ans=(ans+euler(n/i)%p*pow(n,i-1,p))%p;
}
printf("%d\n",ans);
}
return 0;
}
[ACM] POJ 2154 Color (Polya计数优化,欧拉函数)的更多相关文章
- POJ 2154 【POLYA】【欧拉】
前记: TM终于决定以后干啥了.这几天睡的有点多.困饿交加之间喝了好多水.可能是灌脑了. 切记两件事: 1.安心当单身狗 2.顺心码代码 题意: 给你N种颜色的珠子,串一串长度问N的项链,要求旋转之后 ...
- POJ-2888 Magic Bracelet(Burnside引理+矩阵优化+欧拉函数+逆元)
Burnside引理经典好题呀! 题解参考 https://blog.csdn.net/maxwei_wzj/article/details/73024349#commentBox 这位大佬的. 这题 ...
- POJ 2154 color (polya + 欧拉优化)
Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). You ...
- POJ 2154 Color [Polya 数论]
和上题一样,只考虑旋转等价,只不过颜色和珠子$1e9$ 一样的式子 $\sum\limits_{i=1}^n m^{gcd(i,n)}$ 然后按$gcd$分类,枚举$n$的约数 如果这个也化不出来我莫 ...
- 题解报告:poj 2480 Longge's problem(欧拉函数)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
- poj3696 快速幂的优化+欧拉函数+gcd的优化+互质
这题满满的黑科技orz 题意:给出L,要求求出最小的全部由8组成的数(eg: 8,88,888,8888,88888,.......),且这个数是L的倍数 sol:全部由8组成的数可以这样表示:((1 ...
- POJ 2773 Happy 2006【GCD/欧拉函数】
根据欧几里德算法,gcd(a,b)=gcd(a+b*t,b) 如果a和b互质,则a+b*t和b也互质,即与a互质的数对a取模具有周期性. 所以只要求出小于n且与n互质的元素即可. #include&l ...
- POJ 3696 The Luckiest number (欧拉函数,好题)
该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...
- POJ 3090 Visible Lattice Points 【欧拉函数】
<题目链接> 题目大意: 给出范围为(0, 0)到(n, n)的整点,你站在(0,0)处,问能够看见几个点. 解题分析:很明显,因为 N (1 ≤ N ≤ 1000) ,所以无论 N 为多 ...
随机推荐
- poj 1321(DFS)
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别.要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C. ...
- [ASP.Net] MVC2,3,4,5的不同
现在MVC的技术日趋成熟,面对着不同版本的MVC大家不免有所迷惑 -- 它们之间有什么不同呢?下面我把我搜集的信息汇总一下,以便大家能更好的认识不同版本MVC的功能,也便于自己查阅. View Eng ...
- [牛客网练习赛 45 F] Magic Slab 解题报告 (最大权闭合子图)
interlinkage: https://ac.nowcoder.com/acm/contest/847/F description: solution: 最大权闭合子图; 每个单元格看成一个正权点 ...
- Cracking the Coding Interview 6.2
There is an 8*8 chess board in which two diagnolly opposite corners have been cut off. You are given ...
- Pop3协议详解
POP3全称为Post Office Protocol version3,即邮局协议第3版.它被用户代理用来邮件服务器取得邮件.POP3采用的也是C/S通信 模型 用户从邮件服务器上接收邮件的典型 ...
- Hibernate中实体对象的状态
实体对象的状态 这里的实体对象是指Hibernate的O/R映射关系中的域对象(即O/R中的O).实体对象的生命周期是指实体对象由产生到被GC回收的一段过程,实体对象的生命周期包括3种状态:自由状态( ...
- 第5章分布式系统模式 在 .NET 中使用 DataSet 实现 Data Transfer Object
要在 .NET Framework 中实现分布式应用程序.客户端应用程序需要显示一个窗体,该窗体要求对 ASP.NET Web Service 进行多个调用以满足单个用户请求.基于性能方面的考虑,我们 ...
- (整)deepin下mysql的安装与部分错误解决办法
deepin(深度)是国产Linux系统,程序员肯定要了解Linux系统啦,但是在程序安装上可能会有些不习惯,现在让我们来看看mysql在deepin上的安装过程. 1.傻瓜式命令行安装 这也是Lin ...
- (转载)自定义CoordinatorLayout的Behavior(2):实现淘宝和QQ ToolBar透明渐变效果
自定义CoordinatorLayout的Behavior(2):实现淘宝和QQ ToolBar透明渐变效果 作者 小武站台 关注 2016.02.19 11:34 字数 1244 阅读 3885评论 ...
- hdu 2768 Cat vs. Dog 最大独立集 巧妙的建图
题目分析: 一个人要不是爱狗讨厌猫的人,要不就是爱猫讨厌狗的人.一个人喜欢的动物如果离开,那么他也将离开.问最多留下多少人. 思路: 爱猫和爱狗的人是两个独立的集合.若两个人喜欢和讨厌的动物是一样的, ...