Project Euler:Problem 37 Truncatable primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and
7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
#include <iostream>
#include <string>
using namespace std; bool prim(int a)
{
if (a == 1)
return false;
for (int i = 2; i*i <= a; i++)
{
if (a%i == 0)
return false;
}
return true;
} bool tr_prim(int a)
{
int num = a;
int count = 0;
int tmp[10] = { 0 };
while (a)
{
if (!prim(a))
return false;
count++;
tmp[count] = a % 10;
a /= 10;
}
for (int i = count; i > 1; i--)
{
num = num - tmp[i] * pow(10, i - 1);
if (!prim(num))
return false;
}
return true;
} int main()
{ int sum = 0;
for (int i = 10; i <= 1000000; i++)
{
if (tr_prim(i))
{
//cout << i << endl;
sum += i;
}
}
cout << sum << endl;
system("pause");
return 0;
Project Euler:Problem 37 Truncatable primes的更多相关文章
- Project Euler:Problem 58 Spiral primes
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length ...
- Project Euler:Problem 47 Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
- Project Euler:Problem 77 Prime summations
It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + ...
随机推荐
- sublime的一些快捷键
Sublime Text 3非常实用,但是想要用好,一些快捷键不可或缺,所以转了这个快捷键汇总. 用惯了vim,有些快捷键也懒得用了,尤其是在win下面,还有图形界面,所以个人觉得最有用的还是搜索类, ...
- python基本数据类型之元祖tuple
元祖tuple 是对列表的二次加工,书写格式为括号(),里面放元素 元组的一级元素不可被修改,且不能被增加和删除 一般写元组的时候,推荐在最后加入逗号, 能加则加 创建元组 ? 1 tu = (11 ...
- BZOJ 4262 线段树+期望
思路: 把询问离线下来,查询max和查询min相似,现在只考虑查询max 令sum[l,r,x]表示l到r内的数为左端点,x为右端点的区间询问的答案 那么询问就是sun[l1,r1,r2]-sum[l ...
- laydate.js时间选择
例子: <asp:HiddenField ID="hfdDateBuid3" runat="server" /> <script type=& ...
- 备忘录模式(Memento)C++实现
备忘录模式 意图: 在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态.这样以后就可将改对象恢复到原先保存的状态. 适用性: 1.必须保存一个对象在某一个时刻的部分状态,这样以 ...
- Splay树
class SplayNode { public: SplayNode *child[]; char value; int size; bool flip; SplayNode(), flip(fal ...
- Oracle数据库安装与连接与简介
Oracle数据库的安装 1.登录Oracle官网——试用和下载 2.同意协议--->file1 3.完成配置 4.测试连接:打开Oracle developer--->新建连接,注意用户 ...
- Scala 大数据 常用算法收集
一:IP转数字,用于比大小,用在求IP段范围中 def ip2Long(ip: String): Long = { val fragments = ip.split("[.]") ...
- 应运而生! 双11当天处理数据5PB—HiStore助力打造全球最大列存储数据库
阿里巴巴电商业务中历史数据存储与查询相关业务, 大量采用基于列存储技术的HiStore数据库,双11当天HiStore引擎处理数据记录超过6万亿条.原始存储数据量超过5PB.从单日数据处理量上看,该系 ...
- Kafka学习笔记(6)----Kafka使用Producer发送消息
1. Kafka的Producer 不论将kafka作为什么样的用途,都少不了的向Broker发送数据或接受数据,Producer就是用于向Kafka发送数据.如下: 2. 添加依赖 pom.xml文 ...