Project Euler:Problem 37 Truncatable primes
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and
7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
#include <iostream>
#include <string>
using namespace std; bool prim(int a)
{
if (a == 1)
return false;
for (int i = 2; i*i <= a; i++)
{
if (a%i == 0)
return false;
}
return true;
} bool tr_prim(int a)
{
int num = a;
int count = 0;
int tmp[10] = { 0 };
while (a)
{
if (!prim(a))
return false;
count++;
tmp[count] = a % 10;
a /= 10;
}
for (int i = count; i > 1; i--)
{
num = num - tmp[i] * pow(10, i - 1);
if (!prim(num))
return false;
}
return true;
} int main()
{ int sum = 0;
for (int i = 10; i <= 1000000; i++)
{
if (tr_prim(i))
{
//cout << i << endl;
sum += i;
}
}
cout << sum << endl;
system("pause");
return 0;
Project Euler:Problem 37 Truncatable primes的更多相关文章
- Project Euler:Problem 58 Spiral primes
Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length ...
- Project Euler:Problem 47 Distinct primes factors
The first two consecutive numbers to have two distinct prime factors are: 14 = 2 × 7 15 = 3 × 5 The ...
- Project Euler:Problem 55 Lychrel numbers
If we take 47, reverse and add, 47 + 74 = 121, which is palindromic. Not all numbers produce palindr ...
- Project Euler:Problem 63 Powerful digit counts
The 5-digit number, 16807=75, is also a fifth power. Similarly, the 9-digit number, 134217728=89, is ...
- Project Euler:Problem 86 Cuboid route
A spider, S, sits in one corner of a cuboid room, measuring 6 by 5 by 3, and a fly, F, sits in the o ...
- Project Euler:Problem 76 Counting summations
It is possible to write five as a sum in exactly six different ways: 4 + 1 3 + 2 3 + 1 + 1 2 + 2 + 1 ...
- Project Euler:Problem 87 Prime power triples
The smallest number expressible as the sum of a prime square, prime cube, and prime fourth power is ...
- Project Euler:Problem 89 Roman numerals
For a number written in Roman numerals to be considered valid there are basic rules which must be fo ...
- Project Euler:Problem 77 Prime summations
It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + ...
随机推荐
- LeetCode Weekly Contest 18B
1. 496. Next Greater Element I 暴力的话,复杂度也就1000 * 1000 = 1e6, 在1s的时限内完全可以. 当然,有许多优化方法,利用stack维护递减序列的方法 ...
- IO流读取文件内容时,出现空格的问题(未找到原因)
import java.io.File; import java.io.FileReader; import java.io.FileWriter; import java.io.IOExceptio ...
- bind()函数的作用
bind()函数是Function原型上的一个属性,当某个函数调用此方法时,可以通过向bind()函数传入执行对象和调用bind的函数的参数来改变函数的执行对象 /*问题:改变func执行环境,使之输 ...
- hihoCoder挑战赛31
#1595 : Numbers 时间限制:8000ms 单点时限:1000ms 内存限制:256MB 描述 给定n个整数常数c[1], c[2], ..., c[n]和一个整数k.现在需要给2k个整数 ...
- angular实现动态的留言板案例
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- 部署Seafile服务
介绍 官网:https://www.seafile.com 客户端/服务端下载:https://www.seafile.com/download/ 中文安装教程(MySQL版):http://manu ...
- DBGridEh checkbox的一个问题
function TCustomDBGridEh.CheckBeginRowMoving(MouseX, MouseY: Integer; CheckInOnly: Boolean): Boolean ...
- Apex语言(一)开发环境
1.注册salesforce开发者https://developer.salesforce.com/ 2.开发者登录https://login.salesforce.com/ 3.Apex开发者工具 ...
- MyBatis 基础入门
MyBatis 是一个半自动化的持久层的框架,能让开发者专注SQL本身 JDBC 连接数据库的硬编码问题,通过config,mapper配置文件解决 Mybatis开发需要关注的文件 l POJO类( ...
- centos7安装nginx(基础篇)
安装所需环境 Nginx 是 C语言 开发,建议在 Linux 上运行,当然,也可以安装 Windows 版本,本篇则使用 CentOS 7 作为安装环境. 一. gcc 安装安装 nginx 需要先 ...