POJ 3528
三维凸包
/*
增量法求凸包。选取一个四面体,同时把它各面的方向向量向外,增加一个点时,若该点与凸包上的某些面的方
向向量在同一侧,则去掉那些面,并使某些边与新增点一起连成新的凸包上的面。
*/ #include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath> using namespace std;
const int MAXN=550;
const double eps=1e-8;
struct point {
double x,y,z;
};
struct face {
int a,b,c;
bool ok;
};
int n; //初始点数
point p[MAXN]; //空间点
int trianglecnt; //凸包上三角形数
face tri[6*MAXN]; //凸包上被创建的三角形
int vis[MAXN][MAXN]; //点i到点j是属于哪一个三角形。此处是有方向 point operator -(const point &x, const point &y){
point ret;
ret.x=x.x-y.x; ret.y=x.y-y.y; ret.z=x.z-y.z;
return ret;
} point operator * (const point &u,const point &v){ //叉积
point ret;
ret.x=u.y*v.z-u.z*v.y;
ret.y=u.z*v.x-u.x*v.z;
ret.z=u.x*v.y-u.y*v.x;
return ret;
} double operator ^(const point &u,const point &v){
return (u.x*v.x+u.y*v.y+u.z*v.z);
} double dist(point t){
return sqrt(t.x*t.x+t.y*t.y+t.z*t.z);
} double ptoplane(point &tmp,face &f){ //若结果大于0,证明点面的同向,即法向量方向
point m=p[f.b]-p[f.a]; point n=p[f.c]-p[f.a];
point t=tmp-p[f.a];
return (m*n)^t;
} double farea(point a,point b,point c ){
point t1=a-c; point t2=b-c;
return fabs(dist(t1*t2));
}
void dfs(int pt, int ct);
void deal(int pt,int a,int b){
int f=vis[a][b]; //所属三角形,即原来的ab。
face add;
if(tri[f].ok){
if((ptoplane(p[pt],tri[f]))>eps) dfs(pt,f); //若点同样在该f三角形方向一侧,继续调整
else {
add.a=b; add.b=a; add.c=pt; add.ok=1;
vis[pt][b]=vis[a][pt]=vis[b][a]=trianglecnt;
tri[trianglecnt++]=add;
}
}
} void dfs(int pt, int ct){
tri[ct].ok=0; //去掉该面
deal(pt,tri[ct].b,tri[ct].a); //因为有向边ab所属三角形去掉,则反方向边必定属于另一个三角形.
deal(pt,tri[ct].c,tri[ct].b);
deal(pt,tri[ct].a,tri[ct].c);
} void construct (){
int i,j;
trianglecnt=0;
if(n<4) return ; //不可能构成一个多面体
bool tmp=true;
for(i=1;i<n;i++){ //不共点两点
if(dist(p[0]-p[i])>eps){
swap(p[1],p[i]); tmp=false; break;
}
}
if(tmp) return ;
tmp=true;
for(i=2;i<n;i++){ //不共线
if(dist((p[0]-p[1])*(p[1]-p[i]))>eps){
swap(p[2],p[i]); tmp=false; break;
}
}
if(tmp) return ;
tmp=true;
for(i=3;i<n;i++){ //四点不共面K
if(fabs((p[0]-p[1])*(p[1]-p[2])^(p[0]-p[i]))>eps){
swap(p[3],p[i]); tmp=false; break;
}
}
if(tmp) return ;
face add;
for(i=0;i<4;i++){ //使各三角形的方向向量向外,同时记录下三角形的序号
add.a=(i+1)%4; add.b=(i+2)%4; add.c=(i+3)%4; add.ok=1; //等于1表示在凸包上
if(ptoplane(p[i],add)>0) swap(add.b,add.c);
vis[add.a][add.b]=vis[add.b][add.c]=vis[add.c][add.a]=trianglecnt;
tri[trianglecnt++]=add;
}
for(i=4;i<n;i++){ //构建凸包
for(j=0;j<trianglecnt;j++){
if(tri[j].ok&&(ptoplane(p[i],tri[j]))>eps){ //增加点可见该平,即在面方向一侧
dfs(i,j); break;
}
}
}
int cnt=trianglecnt;
trianglecnt=0;
for(i=0;i<cnt;i++){ //只有ok为1的才属于凸包上的三角形
if(tri[i].ok){
tri[trianglecnt++]=tri[i];
}
}
}
double area(){
double ret=0;
for(int i=0;i<trianglecnt;i++){
ret+=farea(p[tri[i].a],p[tri[i].b],p[tri[i].c]);
}
return ret/2;
} int main(){
while(scanf("%d",&n)!=EOF){
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&p[i].z);
construct();
printf("%.3lf\n",area());
}
}
POJ 3528的更多相关文章
- poj 3528 Ultimate Weapon (3D Convex Hull)
3528 -- Ultimate Weapon 一道三维凸包的题目,题目要求求出三维凸包的表面积.看懂了网上的三维凸包的代码以后,自己写的代码,跟网上的模板有所不同.调了一个晚上,结果发现错的只是数组 ...
- POJ 3528 求三维凸包表面积
也是用模板直接套的题目诶 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler #include < ...
- ACM计算几何题目推荐
//第一期 计算几何题的特点与做题要领: 1.大部分不会很难,少部分题目思路很巧妙 2.做计算几何题目,模板很重要,模板必须高度可靠. 3.要注意代码的组织,因为计算几何的题目很容易上两百行代码,里面 ...
- POJ 3579
Median Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3528 Accepted: 1001 Descriptio ...
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- POJ 2965. The Pilots Brothers' refrigerator 枚举or爆搜or分治
The Pilots Brothers' refrigerator Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 22286 ...
- POJ 1753. Flip Game 枚举or爆搜+位压缩,或者高斯消元法
Flip Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 37427 Accepted: 16288 Descr ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
随机推荐
- bzoj 1050 [ HAOI 2006 ] 旅行comf —— 并查集
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1050 没思路的话想想暴力就好了... 首先,比值最小就是确定最小值后最大值最小: 怎样确定最 ...
- 简述RTMPDump与编译移植
RTMPDump主页 ,RTMPDump库主要包含三部分: 1.一个基本的客户端程序 2.两个服务器程序(rtmpsrv.rtmpsuck) 3.一个支持rtmp协议的库—librtmp 下载RTMP ...
- Swift备忘录
Swift 备忘录 2015-4 一.简介 1.Swift 语言由苹果公司在2010年7月开始设计,在 2014 年6月推出,在 2015 年 12 月 3 日开源 2.特点(官方): (1)苹果宣称 ...
- 棋盘问题(dfs)
http://poj.org/problem?id=1321 思路:按行搜索,回溯时还原棋盘. #include <stdio.h> #include <string.h> ] ...
- Elasticserach 同步索引报错:ElasticSearch ClusterBlockException[blocked by: [FORBIDDEN/12/index read-only / allow delete (api)]
欢迎关注个人微信公众号: 小哈学Java, 文末分享阿里 P8 高级架构师吐血总结的 <Java 核心知识整理&面试.pdf>资源链接!! 个人网站: https://www.ex ...
- go之数据类型转换和类型断言
一.类型转换 1.1 简单类型转换 格式 valueOfTypeB = typeB(valueOfTypeA) int 转 float64 package main import "fmt& ...
- Flex使用总结
最近做的项目因为对浏览器的兼容要求是IE10以上,所以大胆的使用了Flex布局,这里总结一些使用心得仅供参考. 一,Flex简单介绍 Flex是Flexible Box的缩写,意为”弹性布局”.任何一 ...
- 【SQL】数值型函数
1. CEIL 语法:CEIL(n) 作用:取大于等于数值n的最小整数 SQL> select ceil(9.1),ceil(9.9),ceil(9) from dual; CEIL(9.1) ...
- Appium Android 获取包名和 Activity 的几种方法 (转)
本文档主要记录“获取包名和 Activity 的方法”,用于自动化测试时启动APP.以下方法主要来源于网络和社区同学的贡献,特此感谢! 1. 方法一: pm list package查看包名 adb ...
- RecyclerView 悬浮/粘性头部效果3种方式
但是以上两种方式onDrawOver()方法实现逻辑对初次查看该段代码要花时间理解.下面代码逻辑(原理一样,同样参考大神代码)相对清晰,易理解 public class StickyDecoratio ...