K-means是一种聚类算法:

这里运用k-means进行31个城市的分类

城市的数据保存在city.txt文件中,内容如下:

BJ,2959.19,730.79,749.41,513.34,467.87,1141.82,478.42,457.64
TianJin,2459.77,495.47,697.33,302.87,284.19,735.97,570.84,305.08
HeBei,1495.63,515.90,362.37,285.32,272.95,540.58,364.91,188.63
ShanXi,1406.33,477.77,290.15,208.57,201.50,414.72,281.84,212.10
NMG,1303.97,524.29,254.83,192.17,249.81,463.09,287.87,192.96
LiaoNing,1730.84,553.90,246.91,279.81,239.18,445.20,330.24,163.86
JiLin,1561.86,492.42,200.49,218.36,220.69,459.62,360.48,147.76
HLJ,1410.11,510.71,211.88,277.11,224.65,376.82,317.61,152.85
ShangHai,3712.31,550.74,893.37,346.93,527.00,1034.98,720.33,462.03
JiangSu,2207.58,449.37,572.40,211.92,302.09,585.23,429.77,252.54
ZheJiang,2629.16,557.32,689.73,435.69,514.66,795.87,575.76,323.36
AnHui,1844.78,430.29,271.28,126.33,250.56,513.18,314.00,151.39
FuJian,2709.46,428.11,334.12,160.77,405.14,461.67,535.13,232.29
JiangXi,1563.78,303.65,233.81,107.90,209.70,393.99,509.39,160.12
ShanDong,1675.75,613.32,550.71,219.79,272.59,599.43,371.62,211.84
HeNan,1427.65,431.79,288.55,208.14,217.00,337.76,421.31,165.32
HuNan,1942.23,512.27,401.39,206.06,321.29,697.22,492.60,226.45
HuBei,1783.43,511.88,282.84,201.01,237.60,617.74,523.52,182.52
GuangDong,3055.17,353.23,564.56,356.27,811.88,873.06,1082.82,420.81
GuangXi,2033.87,300.82,338.65,157.78,329.06,621.74,587.02,218.27
HaiNan,2057.86,186.44,202.72,171.79,329.65,477.17,312.93,279.19
ChongQing,2303.29,589.99,516.21,236.55,403.92,730.05,438.41,225.80
SiChuang,1974.28,507.76,344.79,203.21,240.24,575.10,430.36,223.46
GuiZhou,1673.82,437.75,461.61,153.32,254.66,445.59,346.11,191.48
YunNan,2194.25,537.01,369.07,249.54,290.84,561.91,407.70,330.95
XiZang,2646.61,839.70,204.44,209.11,379.30,371.04,269.59,389.33
SHanXi,1472.95,390.89,447.95,259.51,230.61,490.90,469.10,191.34
GanSu,1525.57,472.98,328.90,219.86,206.65,449.69,249.66,228.19
QingHai,1654.69,437.77,258.78,303.00,244.93,479.53,288.56,236.51
NingXia,1375.46,480.89,273.84,317.32,251.08,424.75,228.73,195.93
XinJiang,1608.82,536.05,432.46,235.82,250.28,541.30,344.85,214.40

本来数据的头一个是中文的,但是由于中文读取需要解码,出了一些问题,索性改成了城市名字的拼音,每一行都是一个城市的数据

然后把city.txt 文件保存到路径文件夹下。这个文件夹是根据编辑软件设定的,我用的是spyder,然后建立了一个工程,就把city.txt文

件考到了工程目录下。

之后在工程中输入一下程序:

'''
created on Wed Jul 05 09:13:43 2017
author: GXTon
email :g159147t@163.com
jiaotashidi qiuzhenwushi
'''
#

import numpy as np                        #要用k-means算法,需要导入numpy
from sklearn.cluster import KMeans #只导入一部分,

def loadData(filePath):        #创建一个读取数据的函数
       fr = open(filePath,'r+')       #这里是去读
       lines = fr.readlines()  #.read()每次读取整个文件,通常用于将文件内容放到一个字符串变量中

#.readlines()一次读取整个文件(类似于.resd())

#.readline()每次只读取一行,通常比.readlines()慢得多。仅当没有足够内存时才使用它。
       retData = []  #用于存储城市的各项消费信息
  retCityName = []  #用于存储城市名称
  for line in lines:
  items = line.strip().split(",")
  retCityName.append(items[0])
  retData.append([float(items[i]) for i in range(1,len(items))])
  return retData,retCityName    #返回值:返回城市名称,以及该城市的各项消费信息。

if __name__ == '__main__':     #这里相当于主函数
   data,cityName = loadData('city.txt')   #利用loadData方法读取数据,加载数据
   km = KMeans(n_clusters=4)             #创建实例,创建k-means算法,这里把所有分成4组;

#调用k-means方法所需参数:n_clusters,用于指定聚类中心的个数

#init,初始聚类中心的初始化方法

#max_iter,最大的迭代次数

#一般调用时只用给出n_clusters即可,init默认是k-means++,max_iter默认是300
   label = km.fit_predict(data)         #调用Kmeans()fit_predict()方法进行计算,

#作用是计算簇中心以及为为簇分配符号,label:聚类后个数据所属的标签。
   expenses = np.sum(km.cluster_centers_,axis=1)    #axis按行求和
#print(expenses)
   CityCluster = [[],[],[],[]]
   for i in range(len(cityName)):   #将城市按照label分成设定的簇
  CityCluster[label[i]].append(cityName[i])  #将每个簇的城市输出
   for i in range(len(CityCluster)):
  print("Expenses:%.2f" % expenses[i])   #将每个簇的平均花费输出
  print(CityCluster[i])

点击运行,便能出来结果。

其中n_clusters类,消费水平相近的城市聚集在一类中

expense:聚类中心点的数值加和,也就是平均消费水平

实现过程:

1、建立工程,导入sklearn相关包

import numpy as np

from sklearn.cluster import KMeans

软件——机器学习与Python,聚类,K——means的更多相关文章

  1. 软件——机器学习与Python,Python3的输出与输入

    输出 用print()在括号中加上字符串,就可以向屏幕上输出指定的文字.比如输出'hello, world',用代码实现如下: >>> print('hello, world') p ...

  2. 软件——机器学习与Python,输入输出的用法

    转自:http://www.cnblogs.com/graceting/p/3875438.html 输入很简单 x = input("Please input x:") Plea ...

  3. 软件——机器学习与Python,if __name__ == '__main__':函数

    if __name__ == '__main__': 想必很多初次接触python都会见到这样一个语句,if __name__ == "__main__": 那么这个语句到底是做什 ...

  4. 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法

    (一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...

  5. 机器学习 Python实践-K近邻算法

    机器学习K近邻算法的实现主要是参考<机器学习实战>这本书. 一.K近邻(KNN)算法 K最近邻(k-Nearest Neighbour,KNN)分类算法,理解的思路是:如果一个样本在特征空 ...

  6. Python聚类算法之基本K均值实例详解

    Python聚类算法之基本K均值实例详解 本文实例讲述了Python聚类算法之基本K均值运算技巧.分享给大家供大家参考,具体如下: 基本K均值 :选择 K 个初始质心,其中 K 是用户指定的参数,即所 ...

  7. 大数据分析与机器学习领域Python兵器谱

    http://www.thebigdata.cn/JieJueFangAn/13317.html 曾经因为NLTK的缘故开始学习Python,之后渐渐成为我工作中的第一辅助脚本语言,虽然开发语言是C/ ...

  8. 机器学习六--K-means聚类算法

    机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...

  9. 灵玖软件NLPIRParser智能文本聚类

    随着互联网的迅猛发展,信息的爆炸式增加,信息超载问题变的越来越严重,信息的更新率也越来越高,用户在信息海洋里查找信息就像大海捞针一样.搜索引擎服务应运而生,在一定程度上满足了用户查找信息的需要.然而互 ...

随机推荐

  1. php远程抓取图片

    public  function GrabImage($url,$filename="") {        if($url=="") return false ...

  2. C# Arcgis Engine 捕捉功能实现

    namespace 捕捉 { public partial class Form1 : Form { private bool bCreateElement=true; ; ; private IEl ...

  3. 使用virtualenv搭建python虚拟开发环境

    在使用python做开发时,如果多人需要在同一台机器上工作,或者机器环境经常变化时, 添加或删除一些python包很可能会影响到你自己的开发环境. 因此,通过virtualenv工具可以创建一个完全属 ...

  4. Hadoop for .NET Developers

    Hadoop for .NET Developers(一):理解Hadoop 这些年来,大数据已经成为分析业界的兴奋源头.对于这个博客系列的目的,我将松散定义这个术语指的重点是从数据核心业务系统里数据 ...

  5. Solr 定义

    福利 => 每天都推送 欢迎大家,关注微信扫码并加入我的4个微信公众号:   大数据躺过的坑      Java从入门到架构师      人工智能躺过的坑         Java全栈大联盟   ...

  6. SKU=Stock Keeping Unit(库存量单位)。即库存进出计量的单位,可以是以件,盒,托盘等为单位

    SKU=Stock Keeping Unit(库存量单位).即库存进出计量的单位,可以是以件,盒,托盘等为单位.SKU这是对于大型连锁超市DC(配送中心)物流管理的一个必要的方法.现在已经被引申为产品 ...

  7. array01.js

    //1.获取指定范围内的随机数 function getRadomNum(min,max){ return Math.floor(Math.random() * (max - min + 1)) + ...

  8. ubuntu系统配置WinQQ

    首先安装Wine sudo add-apt-repository ppa:wine/wine-builds sudo apt-get update sudo apt-get install wineh ...

  9. sql跳过非工作日(周末和节假日)

    简介:场景1:基于开始日期和工期,推算结束日期. 场景2:基于开始日期和结束日期,计算工期 注:需要自己做界面维护工作日表(s_WorkDay)和节假日表(s_SpecialDay) 涉及到的数据表 ...

  10. 通过NFS、FTP、HTTP三种方法安装Redhat Linux (高清版)

          本节教程讲述了通过在Red Hat Linux服务器端假设NSF Server来进行Linux系统安装的过程,并详细介绍了如何制作网络启动盘的细节.演示直观,讲解通俗易懂,特别适合初学者学 ...