[洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由 N×M 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数 N 和 M ,分别表示矩形纸片的长和宽。接下来的 NN 行包含一个 N ×M 的 01 矩阵,表示这张矩形纸片的颜色( 0 表示白色, 1 表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
3 3
1 0 1
0 1 0
1 0 0
4
6 对于这道题目,首先需要一个脑洞很大的转换——“如果横坐标加纵坐标是偶数那么取反,然后转化为最大子矩形”
下面我拿样例做个例子
对于样例矩阵 1 0 1
0 1 0
1 0 0
经过转化后就变成了
0 0 0
0 0 0
0 0 1
最大子矩形面积为6,最大正方形面积为4
为什么这样可以呢?我的理解是,如果一个矩形可以作为棋盘,那么它的黑白两色肯定是相间的。既然是相间的,每隔一位颜色取反岂不就是同一种颜色了吗?当然,黑白二色要各判断一次最大子矩形和最大子正方形。 下面我们考虑怎么得到最大子正方形,
f[i][j]表示从第i行第j列向第一行第一列逐渐扩展的最大子正方形的边长。在a[i][j]为我们统计的数(1或0)的情况下,f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1])+1
第一次看到的人估计很难理解,为什么是min呢?确定没有打错吗?然而,没错,当时我也花了很久才能理解
下面写一个例子,我们计算1的最大正方形
1 1 1 0 1 1
0 1 1 1 1 0
1 1 1 1 1 0
0 0 1 1 1 1
1 1 1 1 0 1
f[1][1]=1 f[1][2]=1 f[2][1]=0 f[2][2]=min(f[1][2],f[1][1],f[2][1])+1=1
f[1][3]=1 f[1][4]=0 f[1][5]=1 f[1][6]=1
f[2][3]=min(f[1][3],f[1][2],f[2][2])+1=2
.......
下面的读者可以手推。
下面我讲讲自己的理解。因为要形成一个正方形,f[i-1][j-1],f[i-1][j],f[i][j-1]必须要同时满足“条件”,即子正方形内必须完全是1,有一个是0都不行,这就是为什么取min了 下面我们考虑怎么得到最大子矩形(下面只讨论统计1的,统计0的同理)
1.预处理出
l[i][j]以(i,j)向左一直为1的话最大扩展到第几列
r[i][j]以(i,j)向右一直为1的话最大扩展到第几列
不理解的话看看程序就懂了
2.
L[i][j]以(i,j)为下端点的悬线向左一直为1的话最大扩展到第几列
R[i][j]以(i,j)为下端点的悬线向右一直为1的话最大扩展到第几列
h[i][j],表示(i,j)为下端点的最大悬线长(就是(i,j)向上始终为1最大能有多长)
对于(i,j)表示的最大矩形就是(R[i][j]-L[i][j]-1)*h[i][j] 还有一点小细节见注释
#include<bits/stdc++.h>
#define mem(aa,bb) memset(aa,bb,sizeof(aa))
#define ri register int
using namespace std; const int maxn=+;
int n,m,ans1,ans2;
int a[maxn][maxn],f[maxn][maxn],l[maxn][maxn],r[maxn][maxn],L[maxn][maxn],R[maxn][maxn],h[maxn][maxn];
void work()
{
mem(f,);mem(l,);mem(r,);mem(L,);mem(R,);mem(h,);
for (ri i=;i<=n;i++)//预处理
{
int tmp=;
for (ri j=;j<=m;j++)
if (a[i][j]) l[i][j]=tmp;
else tmp=j,L[i][j]=;
tmp=m+;
for (ri j=m;j>=;j--)
if (a[i][j]) r[i][j]=tmp;
else tmp=j,R[i][j]=m+;
}
for (int i=;i<=m;i++) R[][i]=m+;//小细节
for (ri i=;i<=n;i++)
for (ri j=;j<=m;j++)
if (a[i][j]){
f[i][j]=min(f[i-][j-],min(f[i-][j],f[i][j-]))+;
h[i][j]=h[i-][j]+;//采取一边计算一边处理
L[i][j]=max(L[i-][j],l[i][j]);
R[i][j]=min(R[i-][j],r[i][j]);
ans1=max(ans1,f[i][j]*f[i][j]);
ans2=max(ans2,h[i][j]*(R[i][j]-L[i][j]-));
}
}
int main()
{
scanf("%d%d",&n,&m);
for (ri i=;i<=n;i++)
for (ri j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
if (!((i+j)&)) a[i][j]=-a[i][j];
}
work();
for (ri i=;i<=n;i++)
for (ri j=;j<=m;j++)
a[i][j]=-a[i][j];
work();
printf("%d\n%d",ans1,ans2);
return ;
}
[洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)的更多相关文章
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)
和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169 p4147 p2701 p1387 #include<cstdio> #include<algorithm& ...
- 洛谷P1169[ZJOI2007]棋盘制作
题目 一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题. 而这道题就是比较经典的可以用悬线法来处理的题. 而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然 ...
- BZOJ1057或洛谷1169 [ZJOI2007]棋盘制作
BZOJ原题链接 洛谷原题链接 设\(L[i][j],R[i][j],H[i][j]\)表示点\((i,j)\)向左.右.上尽量拓展的左端点.右端点.上端点的坐标. \(L,R\)直接初始化好,\(H ...
- 洛谷 P1129 [ZJOI2007]矩阵游戏 解题报告
P1129 [ZJOI2007]矩阵游戏 题目描述 小\(Q\)是一个非常聪明的孩子,除了国际象棋,他还很喜欢玩一个电脑益智游戏――矩阵游戏.矩阵游戏在一个\(N*N\)黑白方阵进行(如同国际象棋一般 ...
- 洛谷 P1110 [ZJOI2007]报表统计 解题报告
P1110 [ZJOI2007]报表统计 题目描述 \(Q\)的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小\(Q\)希望可以帮妈妈分担一些工作,作为她的生日礼物之一. 经过仔细 ...
- 洛谷1169 [ZJOI2007] 棋盘制作
题目链接 题意概述:给出由0 1构成的矩阵,求没有0 1 相邻的最大子矩阵的最大子正方形. 解题思路:设f[i][j]表示i j向上能到哪,l[i][j] r[i][j]表示向左/右,转移时分开计算矩 ...
随机推荐
- Javaee 应用分层架构
应用分层的优点:修改方便,仅修改有问题的那层以及其相邻几层即可,层数越多,其相应的资源分配也会更加平均 缺点:耗费时间,速度慢,调用占用大量堆栈. JAVAEE的分层: 4层分法:1.客户层:运行在客 ...
- MyEclipse打包可运行的jar包
详细步骤: Export... -> java -> Runnable JAR file Launch configuration:选择main方法所在的文件/类 Export desti ...
- lscript.ld 链接器脚本
sumary选项卡 lscript.ld是这个应用程序的链接器脚本. 这是实用的作为一个报告 看看内存是针相应用程序. 它也能够被编辑以改变应用程序的位置.双击Hello_Zynqàsrcà lscr ...
- HDU 3966 Aragorn's Story 树链剖分+BIT区间修改/单点询问
Aragorn's Story Description Our protagonist is the handsome human prince Aragorn comes from The Lord ...
- httpClient模拟登陆校内某系统
package com.huowolf; import java.util.ArrayList; import java.util.List; import org.apache.http.HttpE ...
- php,二维数组的输出出现了问题,提示:Notice: Array to string conversion
<?php $arr=array(array("111","222","333"),array("444",&qu ...
- 【原创】RPM安装软件时解决依赖性问题(自动解决依赖型)
满足以下3个条件才能自动解决依赖性: 1.使用rpmdb -redhat(在安装时会自动弹出依赖性错误) 2.所有互相依赖的软件都必须在同一个目录下面. 3.调用-aid参数.
- SpringCloud学习笔记(1)----认识微服务与SpringCloud
1. 微服务是什么? 微服务是一种由多个服务组成的集合体,它属于一种软甲架构,在微服务中,它的每个服务都是独立存在的,微服务是一种去中心化的思想. 它具有开发简单,技术栈灵活,服务独立解耦,可用性高 ...
- Python 批量处理特定格式文件
#批量对文件夹下的'.mat'进行处理 def file_name(file_dir,suff): L=[] for root, dirs, files in os.walk(file_dir): f ...
- AJAX和JSON实际应用
实现功能:登录验证 一.因为我是在SpringMVC框架上写的,首先得添加依赖: <dependencies> <!-- 用来测试的依赖 --> <dependency& ...