BZOJ 1509 逃学的小孩 - 树型dp
题目大意:
在一棵树中, 每条边都有一个长度值, 现要求在树中选择 3 个点 X、Y、 Z , 满足 X 到 Y 的距离不大于 X 到 Z 的距离, 且 X 到 Y 的距离与 Y 到 Z 的距离之和最大,求这个最大值。
题目分析:
在一篇论文中看到了这道题,于是就来做做。
从这题中可以得到很多启示,光看题意一定会想到枚举点来做,不过如果枚举三点的话就爆了,于是枚举的那个点就成了解题的关键。我们发现,所有的答案无非就两种:

(红色代表特殊点,黄色代表起点)
他们都是最短路径 + 次短路径 * 2 + 最长路径(第一种情况相当于最短路径为0),于是第一种情况可以归到第二种情况中,这样一定是满足题意的条件下最优的。那么直接分析第二种情况:
发现无论是第一种还是第二种都有一个特殊点---分叉点A,如果用分叉点来表示距离那么|XY| + |YZ| = |XA| + 2|YA| + |ZA|,要让答案最大,也就是让三点到A的距离最大。
这下就好办了,求最大距离---树型dp:这样的三条链又有两种情况:

第一种是三条链都在子树中,第二种是一条在子树外,两条在子树中。那么进行两遍dp:第一遍从求u向下的三条不在同一颗子树的三条最长链(最长,次长,次次长),第二遍求u向上的一条最长链。
最后统计u分叉点的答案时,取这四条链的前三大,答案更新为最短路径 + 次短路径 * 2 + 最长路径。
改了我一个多小时,结果发现是输出优化的int没有改成long long!!
code
#include<bits/stdc++.h>
using namespace std;
#define maxn 200050
typedef long long ll;
namespace IO{
inline int read(){
int i = 0, f = 1; char ch = getchar();
for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
if(ch == '-') f = -1, ch = getchar();
for(; ch >= '0' && ch <= '9'; ch = getchar())
i = (i << 3) + (i << 1) + (ch - '0');
return i * f;
}
inline void wr(ll x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) wr(x / 10);
putchar(x % 10 + '0');
}
}using namespace IO;
int n, m;
typedef pair<int, ll> P;
vector<P> adj[maxn];
ll dp[maxn][5], ans;
inline void dfs1(int u, int f){
for(int e = adj[u].size() - 1; e >= 0; e--){
int v = adj[u][e].first;
if(v == f) continue;
ll t = adj[u][e].second;
dfs1(v, u);
if(dp[v][1] + t > dp[u][1]){
dp[u][3] = dp[u][2];
dp[u][2] = dp[u][1];
dp[u][1] = dp[v][1] + t;
}
else if(dp[v][1] + t > dp[u][2]){
dp[u][3] = dp[u][2];
dp[u][2] = dp[v][1] + t;
}
else if(dp[v][1] + t > dp[u][3]){
dp[u][3] = dp[v][1] + t;
}
}
}
inline void dfs2(int u, int f){
for(int e = adj[u].size() - 1; e >= 0; e--){
int v = adj[u][e].first;
if(v == f) continue;
ll t = adj[u][e].second;
ll a = (dp[v][1] + t == dp[u][1]) ? (dp[u][2]): (dp[u][1]);
dp[v][4] = max(a + t, dp[u][4] + t);
dfs2(v, u);
}
}
int main(){
n = read(), m = read();
for(int i = 1; i <= m; i++){
int x = read(), y = read(), t = read();
adj[x].push_back(P(y, 1ll*t));
adj[y].push_back(P(x, 1ll*t));
}
dfs1(1, 0);
dfs2(1, 0);
for(int i = 1; i <= n; i++){
ll tmp[10];
tmp[1] = dp[i][1], tmp[2] = dp[i][2], tmp[3] = dp[i][3], tmp[4] = dp[i][4];
sort(tmp + 1, tmp + 4 + 1);
ans = max(ans, tmp[2] + tmp[3]*2 + tmp[4]);
}
wr(ans);
return 0;
}
BZOJ 1509 逃学的小孩 - 树型dp的更多相关文章
- BZOJ1509 [NOI2003]逃学的小孩 树型DP
题目: 分析: 首先明确我们是要求 min(dist[C][A],dist[C][B])+dist[A][B]. 我们把C当成树根,第一我们可以发现min里面取dist[C][A]或者dist[C][ ...
- BZOJ 1509 逃学的小孩(树的直径)
题意:从树上任找三点u,v,w.使得dis(u,v)+min(dis(u,w),dis(v,w))最大. 有一个结论u,v必是树上直径的两端点. 剩下的枚举w就行了. 具体不会证... # inclu ...
- BZOJ 1564 :[NOI2009]二叉查找树(树型DP)
二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...
- BZOJ 1864 三色二叉树 - 树型dp
传送门 题目大意: 给一颗二叉树染色红绿蓝,父亲和儿子颜色必须不同,两个儿子颜色必须不同,问最多和最少能染多少个绿色的. 题目分析: 裸的树型dp:\(dp[u][col][type]\)表示u节点染 ...
- [BZOJ 1509] 逃学的小孩
Link: BZOJ 1509 传送门 Solution: 一开始受样例影响又犯了想当然的毛病……图中的C点不一定在直径上! 3次$dfs$求出树的直径及直径的两个端点$rt1,rt2$到每个点的距离 ...
- 【bzoj 4455】小星星(树型DP+容斥原理+dfs建树和计算的2种方式)
题意:给一个n个点的图和一个n个点的树,求图和树上的点一一对应的方案数.(N<=17) 解法:1.在树的结构上进行tree DP,f[i][j]表示树上点 i 对应图上点 j 时,这个点所在子树 ...
- BZOJ 2286 消耗战 - 虚树 + 树型dp
传送门 题目大意: 每次给出k个特殊点,回答将这些特殊点与根节点断开至少需要多少代价. 题目分析: 虚树入门 + 树型dp: 刚刚学习完虚树(好文),就来这道入门题签个到. 虚树就是将树中的一些关键点 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断
好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...
随机推荐
- html只能有一个id,并且id的值只能是一个
1.如果有相同的ID,javascript只会取第一个具有该ID的标签. 2.如果id值有两个,JS只会取到第一个,并不会像class类一样,类名并列就可以同时取到.
- JS /CSS 实现模态框(注册和登录组件)
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- [D3] Add hovercard
The way to add hovercard is Append a div with class 'hovercard' in the tick function, positioning th ...
- PHP模拟链表操作
PHP模拟链表操作 一.总结 1.类成员用的是-> 2.对象节点相连的话,因为是对象,所以不用取地址符号 3.数组传递参数的时候传引用的方法 ,& 二.PHP模拟链表操作 代码一: /* ...
- C语言18个经典问题答录
原文地址:转载:C语言18个经典问题答录作者:lloo 1.这样的初始化有什么问题?char *p = malloc(10); 编译器提示"非法初始式" 云云. 答:这个声明是静态 ...
- Altium Designer如何移动选中的所有对象
用shift去选中, 快捷键M S移动整体
- POJ 3090 Visible Lattice Points (ZOJ 2777)
http://poj.org/problem?id=3090 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1777 题目大意: ...
- 无法顺利删除问题处理一则-ORA-00604和ORA-00942错误
1.以sys/oracle登录 2. -- Create tablecreate table ARGUMENT$( OBJ# NUMBER not null, PROCEDURE ...
- angular的Dom操作
原文 https://www.jianshu.com/p/9d7249922bda 大纲 1.angular的DOM操作 2.为什么不能直接操作DOM? 3.三种错误操作DOM的方式 4.angula ...
- 【77.78%】【codeforces 625C】K-special Tables
time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...
