讲起来不是特别好讲.
总之,如果 $dp[i+1]>=dp[i]$,故$dp[i]=max(dp[i],dp[i+1])$

Code:

#include <cstdio>
#include <algorithm>
#include <cstring>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 2000000
#define N 30
#define ll long long
using namespace std;
int last=1,tot=1,n;
int ch[maxn][N],cnt[maxn],f[maxn],dis[maxn],rk[maxn],dp[maxn];
ll C[maxn];
char str[maxn];
struct Suffix_Automaton{
void ins(int c){
int p=last,np=++tot; last=np; dis[np]=dis[p]+1;
while(p&&!ch[p][c])ch[p][c]=np,p=f[p];
if(!p) f[np]=1;
else{
int q=ch[p][c],nq;
if(dis[q]==dis[p]+1) f[np]=q;
else{
nq=++tot;
dis[nq]=dis[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
f[nq]=f[q],f[q]=f[np]=nq;
while(p&&ch[p][c]==q) ch[p][c]=nq,p=f[p];
}
}
cnt[last]=1;
}
}sam;
int main(){
//setIO("input");
scanf("%s",str),n=strlen(str);
for(int i=0;i<n;++i) sam.ins(str[i]-'a');
for(int i=1;i<=tot;++i) ++C[dis[i]];
for(int i=1;i<=tot;++i) C[i]+=C[i-1];
for(int i=1;i<=tot;++i) rk[C[dis[i]]--]=i;
for(int i=tot;i>=1;--i)
{
int p=rk[i];
cnt[f[p]]+=cnt[p];
dp[dis[p]]=max(dp[dis[p]],cnt[p]);
}
for(int i=n-1;i>=1;--i) dp[i]=max(dp[i],dp[i+1]);
for(int i=1;i<=n;++i) printf("%d\n",dp[i]);
return 0;
}

  

SPOJ8222 NSUBSTR - Substrings 后缀自动机_动态规划的更多相关文章

  1. SPOJ8222 NSUBSTR - Substrings(后缀自动机)

    You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...

  2. ●SPOJ 8222 NSUBSTR–Substrings(后缀自动机)

    题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 后缀自动机的水好深啊!懂不了相关证明,带着结论把这个题做了.看来这滩深水要以后再来了. 本题要用到一个叫 R ...

  3. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  4. SPOJ NSUBSTR Substrings ——后缀自动机

    建后缀自动机 然后统计次数,只需要算出right集合的大小即可, 然后更新f[l[i]]和rit[i]取个max 然后根据rit集合短的一定包含长的的性质,从后往前更新一遍即可 #include &l ...

  5. SP8222 NSUBSTR - Substrings(后缀自动机+dp)

    传送门 解题思路 首先建出\(sam\),然后把\(siz\)集合通过拓扑排序算出来.对于每个点只更新它的\(maxlen\),然后再从大到小\(dp\)一次就行了.因为\(f[maxlen-1]&g ...

  6. Substrings SPOJ - NSUBSTR (后缀自动机)

    Substrings \[ Time Limit: 100ms\quad Memory Limit: 1572864 kB \] 题意 给出一个长度为 \(250000\) 的字符串,求出所有 \(x ...

  7. 【CF316G3】Good Substrings 后缀自动机

    [CF316G3]Good Substrings 题意:给出n个限制(p,l,r),我们称一个字符串满足一个限制当且仅当这个字符串在p中的出现次数在[l,r]之间.现在想问你S的所有本质不同的子串中, ...

  8. SPOJ8222 NSUBSTR - Substrings

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. [bzoj4199][Noi2015]品酒大会_后缀自动机_后缀树_树形dp

    品酒大会 bzoj-4199 Noi-2015 题目大意:给定一个字符串,如果其两个子串的前$r$个字符相等,那么称这两个子串的开头两个位置$r$相似.如果两个位置勾兑在一起那么美味度为两个位置的乘积 ...

随机推荐

  1. linux 应用软件集合

    史上最全面的Linux应用软件大集合 | 博客水木 1. 生产力 Linux 桌面的便利贴:Stickynotes sudo add-apt-repository ppa:umang/indicato ...

  2. angular4(2-1)angular脚手架引入第三方类库(jquery)

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 如何在angular4脚手架中引入第三方类库呢比如jquery.swiper.bootstrap...... 例如引入j ...

  3. webpack的像素转vw loader插件

    这是一款针对webpack的像素转vw单位的loader插件. 笔者公司中,h5 rem的开发方案目前已经渐渐开始转向vw方案,因此本工具应运而生. 目前所制作的h5,大部分设计稿分辨率都是750的宽 ...

  4. App.config配置详解

    经上一篇文章https://www.cnblogs.com/luna-hehe/p/9104701.html发现自己对配置文件很是不了解,同样还是查了半天终于发现另一片宝贵文档https://www. ...

  5. Python内置数据结构之字符串str

    1. 数据结构回顾 所有标准序列操作(索引.切片.乘法.成员资格检查.长度.最小值和最大值)都适用于字符串,但是字符串是不可变序列,因此所有的元素赋值和切片赋值都是非法的. >>> ...

  6. H5教程:移动页面性能优化

    随着移动互联网的发展,我们越发要关注移动页面的性能优化,今天跟大家谈谈这方面的事情. 首先,为什么要最移动页面进行优化? 纵观目前移动网络的现状,移动页面布局越来越复杂,效果越来越炫,直接导致了文件越 ...

  7. B. Recursive Queries 打表

    Code: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring& ...

  8. ArrayList的使用方法

    1.什么是ArrayList    ArrayList就是传说中的动态数组,用MSDN中的说法,就是Array的复杂版本,它提供了如下一些好处: 动态的增加和减少元素 实现了ICollection和I ...

  9. nodejs 守护进程运行

    有四种方法: 1.forever forver start  bin/www 2.pm2 pm2 strat bin/www 3.node自身进程保护 nohup node /bin/www  > ...

  10. vue-cli解析

    前言 这段时间,算是空出手来写几篇文章了.由于很久都没有时间整理现在所用的东西了,所以,接下来会慢慢整理出一些文档来记录前段时间的工作和生活. 这篇文章的主题是vue-cli的理解.或许,很多人在开发 ...