https://www.luogu.org/problem/show?pid=1351

题目描述

无向连通图G 有n 个点,n - 1 条边。点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 。图上两点( u , v ) 的距离定义为u 点到v 点的最短距离。对于图G 上的点对( u, v) ,若它们的距离为2 ,则它们之间会产生Wu×Wv 的联合权值。

请问图G 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入输出格式

输入格式:

输入文件名为link .in。

第一行包含1 个整数n 。

接下来n - 1 行,每行包含 2 个用空格隔开的正整数u 、v ,表示编号为 u 和编号为v 的点之间有边相连。

最后1 行,包含 n 个正整数,每两个正整数之间用一个空格隔开,其中第 i 个整数表示图G 上编号为i 的点的权值为W i 。

输出格式:

输出文件名为link .out 。

输出共1 行,包含2 个整数,之间用一个空格隔开,依次为图G 上联合权值的最大值

和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对10007 取余。

输入输出样例

输入样例#1:

5
1 2
2 3
3 4
4 5
1 5 2 3 10
输出样例#1:

20 74

说明

本例输入的图如上所示,距离为2 的有序点对有( 1,3) 、( 2,4) 、( 3,1) 、( 3,5) 、( 4,2) 、( 5,3) 。

其联合权值分别为2 、15、2 、20、15、20。其中最大的是20,总和为74。

【数据说明】

对于30% 的数据,1 < n≤ 100 ;

对于60% 的数据,1 < n≤ 2000;

对于100%的数据,1 < n≤ 200 , 000 ,0 < wi≤ 10, 000 。

有点逆向思维的感觉——题目描述为距离为2的两点求值,那就可以枚举每个点所连出的每个点(有点绕),就简单了

 #include <algorithm>
#include <cstdio>
#include <vector> using namespace std; const int mod();
const int N=+;
vector<int>vec[N];
int n,u,v,w[N];
int s,maxn,ansmax,anssum; void work(int x)
{
int sum=,max1=,max2=;
for(int i=;i<vec[x].size();i++)
{
if(w[vec[x][i]]>max1) max2=max1,max1=w[vec[x][i]];
else
if(w[vec[x][i]]>max2) max2=w[vec[x][i]];
anssum=(anssum+sum*w[vec[x][i]])%mod;
sum=(sum+w[vec[x][i]])%mod;
}
ansmax=max(ansmax,max1*max2);
} int main()
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
vec[u].push_back(v);
vec[v].push_back(u);
}
for(int i=;i<=n;i++) scanf("%d",w+i);
for(int i=;i<=n;i++) work(i);
printf("%d %d",ansmax,(anssum<<)%mod);
return ;
}

洛谷——P1351 联合权值的更多相关文章

  1. 洛谷 P1351 联合权值 题解

    P1351 联合权值 题目描述 无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边.点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条 ...

  2. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  3. 洛谷 P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  5. 洛谷P1351 联合权值(树形dp)

    题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...

  6. 洛谷 P1351 联合权值 —— 树形DP

    题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...

  7. 洛谷P1351 联合权值

    \(\Large\textbf{Description:}\) \(\large一棵树,父子之间距离为1,求距离为2的两点点权之积的最大值与和.\) \(\Large\textbf{Solution: ...

  8. 洛谷 1351 联合权值——树形dp

    题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...

  9. P1351 联合权值(树形dp)

    P1351 联合权值 想刷道水题还交了3次.....丢人 (1.没想到有两个点都是儿子的状况 2.到处乱%(大雾)) 先dfs一遍处理出父亲$fa[x]$ 蓝后再一遍dfs,搞搞就出来了. #incl ...

随机推荐

  1. 数据库-mongodb-索引

    1.索引提高查询速度,降低写入速度,权衡常用的查询字段,不必在太多列上建立索引 2.在mongodb中,索引可以按字段升序.降序来创建,便于排序 3.默认是使用btree 来组织索引文件,2.4版以后 ...

  2. nodejs-配置vs code的插件

    在windows上安装好npm后,再在终端里使用npm安装express,再安装express-generator  进入express的目录, 在终端中执行 npm install 启动expres ...

  3. HDU 4196

    很容易由算术基本定理知道,完全平方数就是所有质因子指数为偶数的数.而求得N以下的质因子,可由前两篇的公式知,由N!与p的关系求得.对于指数为p的,用N!除去就可以,因为p必定属于N以内,且无重复. 至 ...

  4. NYOJ 298

    利用矩阵来做变换,参考Max大神的思想的,虽然不是同一道题. ----------- 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置.操作有平移.缩放.翻转和旋转    这里的操 ...

  5. Android设计模式(三)--装饰模式

    1.定义: Attach additional responsibilities to an object dynamically keeping the same interface.  Decoa ...

  6. 王立平--split字符串切割

    watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMzQyNTUyNw==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...

  7. PPAPI插件与浏览器的通信

    PPAPI的插件,原本是能够使用JS与浏览器交互的,https://code.google.com/p/ppapi/wiki/InterfacingWithJavaScript.这里还提供了一个JS与 ...

  8. python3连接Mairadb数据库

    <span style="font-size:18px;">#本代码演示的是python3.3.5下连接Mairadb数据库</span> <span ...

  9. Java-MyBatis:MyBatis3 | 日志

    ylbtech-Java-MyBatis:MyBatis3 | 日志 1.返回顶部 1. 日志 Mybatis 的内置日志工厂提供日志功能,内置日志工厂将日志交给以下其中一种工具作代理: SLF4J ...

  10. 编程求解,输入两个整数n和m,从数列1,2,3,……n中随意取几个数,使其和等于m。要求将所有的可能组合列出来

    import java.util.LinkedList; import java.util.Scanner; public class Main { private static LinkedList ...