Language:
Default
It's not a Bug, It's a Feature!
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 1353   Accepted: 516

Description

It is a curious fact that consumers buying a new software product generally do not expect the software to be bug-free. Can you imagine buying a car whose steering wheel only turns to the right?

Or a CD-player that plays only CDs with country music on them?
Probably not. But for software systems it seems to be acceptable if they do not perform as they should do. In fact, many software companies have adopted the habit of sending out patches to fix bugs every few weeks after a new product is released (and even
charging money for the patches). 

Tinyware Inc. is one of those companies. After releasing a new word processing software this summer, they have been producing patches ever since. Only this weekend they have realized a big problem with the patches they released. While all patches fix some bugs,
they often rely on other bugs to be present to be installed. This happens because to fix one bug, the patches exploit the special behavior of the program due to another bug. 



More formally, the situation looks like this. Tinyware has found a total of n bugs B = {b1, b2, ..., bn} in their software. And they have released m patches p1, p2, ..., pm. To apply patch pi to the software, the bugs Bi+ in B have to be present
in the software, and the bugs Bi- in B must be absent (of course Bi+ ∩ Bi- = Φ). The patch then fixes the bugs Fi- in B (if they have been present) and introduces the new bugs Fi+ in B (where, again, Fi+
Fi- = Φ). 



Tinyware's problem is a simple one. Given the original version of their software, which contains all the bugs in B, it is possible to apply a sequence of patches to the software which results in a bug- free version of the software? And if so, assuming that
every patch takes a certain time to apply, how long does the fastest sequence take?

Input

The input contains several product descriptions. Each description starts with a line containing two integers n and m, the number of bugs and patches, respectively. These values satisfy 1 <= n <= 20 and 1 <= m <= 100. This is followed by m lines describing the
m patches in order. Each line contains an integer, the time in seconds it takes to apply the patch, and two strings of n characters each. 



The first of these strings describes the bugs that have to be present or absent before the patch can be applied. The i-th position of that string is a ``+'' if bug bi has to be present, a ``-'' if bug bi has to be absent, and a `` 0'' if it doesn't matter whether
the bug is present or not. 



The second string describes which bugs are fixed and introduced by the patch. The i-th position of that string is a ``+'' if bug bi is introduced by the patch, a ``-'' if bug bi is removed by the patch (if it was present), and a ``0'' if bug bi is not affected
by the patch (if it was present before, it still is, if it wasn't, is still isn't). 



The input is terminated by a description starting with n = m = 0. This test case should not be processed. 

Output

For each product description first output the number of the product. Then output whether there is a sequence of patches that removes all bugs from a product that has all n bugs. Note that in such a sequence a patch may be used multiple times. If there is such
a sequence, output the time taken by the fastest sequence in the format shown in the sample output. If there is no such sequence, output ``Bugs cannot be fixed.''. 



Print a blank line after each test case.

Sample Input

3 3
1 000 00-
1 00- 0-+
2 0-- -++
4 1
7 0-0+ ----
0 0

Sample Output

Product 1
Fastest sequence takes 8 seconds. Product 2
Bugs cannot be fixed.

Source

这个题拿到手并不会做,没有好的思路,然后就看了网上的题解。第一次碰到不建图也能SPFA的,又学习了。另外这一题的位运算处理也非常巧妙,这是我不熟悉的,先放在这里,以后多来看几遍。

參考这两篇博客,写的非常好:http://www.cnblogs.com/scau20110726/archive/2012/12/16/2820739.html

http://www.cnblogs.com/staginner/archive/2011/10/25/2223489.html

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v) memset ((t) , v, sizeof(t))
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define DBG pf("Hi\n")
typedef long long ll;
using namespace std; #define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 25;
const int MAXN = 111;
const int MAXM = (1<<20)+100;
const int N = 1005; char s1[maxn],s2[maxn];
int s[2][MAXN],t[2][MAXN],cost[MAXN];
int dist[MAXM];
bool inq[MAXM];
int n,m; void SPFA()
{
int i,j;
mem(inq,false);
mem(dist,INF);
queue<int>Q;
int start=(1<<n)-1;
Q.push(start);
inq[start]=true;
dist[start]=0;
while (!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for (i=0;i<m;i++)
{
if ((u|s[1][i])==u&&(u&s[0][i])==u)
{
int v=u;
v|=t[1][i];
v&=t[0][i];
if (dist[v]>dist[u]+cost[i])
{
dist[v]=dist[u]+cost[i];
if (!inq[v])
{
inq[v]=true;
Q.push(v);
}
}
}
}
}
// for(i=0;i<=start;i++)
// pf("%d ",dist[i]);
// pf("\n");
if (dist[0]==INF)
pf("Bugs cannot be fixed.\n");
else
pf("Fastest sequence takes %d seconds.\n",dist[0]);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
int i,j,cas=0;
while (sff(n,m))
{
if (n==0&&m==0) break;
mem(s,0);
mem(t,0);
for (i=0;i<m;i++)
{
scanf("%d%s%s",&cost[i],s1,s2);
for (j=0;j<n;j++)
{
if (s1[j]=='+')
s[1][i]+=(1<<j);
if (s1[j]!='-')
s[0][i]+=(1<<j);
if (s2[j]=='+')
t[1][i]+=(1<<j);
if (s2[j]!='-')
t[0][i]+=(1<<j);
}
}
pf("Product %d\n",++cas);
SPFA();
pf("\n");
}
return 0;
}

It&#39;s not a Bug, It&#39;s a Feature! (poj 1482 最短路SPFA+隐式图+位运算)的更多相关文章

  1. 【UVA】658 - It&#39;s not a Bug, it&#39;s a Feature!(隐式图 + 位运算)

    这题直接隐式图 + 位运算暴力搜出来的,2.5s险过,不是正法,做完这题做的最大收获就是学会了一些位运算的处理方式. 1.将s中二进制第k位变成0的处理方式: s = s & (~(1 < ...

  2. uva_658_It&#39;s not a Bug, it&#39;s a Feature!(最短路)

    It's not a Bug, it's a Feature! Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & ...

  3. UVA - 658 It's not a Bug, it's a Feature! (隐式图的最短路,位运算)

    隐式的图搜索,存不下边,所以只有枚举转移就行了,因为bug的存在状态可以用二进制表示,转移的时候判断合法可以用位运算优化, 二进制pre[i][0]表示可以出现的bug,那么u&pre[i][ ...

  4. 【uva 658】It's not a Bug, it's a Feature!(图论--Dijkstra或spfa算法+二进制表示+类“隐式图搜索”)

    题意:有N个潜在的bug和m个补丁,每个补丁用长为N的字符串表示.首先输入bug数目以及补丁数目.然后就是对M个补丁的描述,共有M行.每行首先是一个整数,表明打该补丁所需要的时间.然后是两个字符串,第 ...

  5. UVa 658 - It's not a Bug, it's a Feature!(Dijkstra + 隐式图搜索)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  6. 错误号码2003 Can&#39;t connect to MySQL server &#39;localhost&#39; (0)

    错误描写叙述 错误原因 近期,我一直都能够用SQLyog连接本地数据库,可是近几天却无法连接:而且一直都报上述错误,我查阅了非常多资料,发现有非常多中说法 总结一下 第一,MySQL中的my.ini出 ...

  7. 退役笔记一#MySQL = lambda sql : sql + &#39; Source Code 4 Explain Plan &#39;

    Mysql 查询运行过程 大致分为4个阶段吧: 语法分析(sql_parse.cc<词法分析, 语法分析, 语义检查 >) >>sql_resolver.cc # JOIN.p ...

  8. Error creating bean with name &#39;com.you.user.dao.StudentDaoTest&#39;: Injection of autowired dependencies

    1.错误叙述性说明 七月 13, 2014 6:37:41 下午 org.springframework.beans.factory.xml.XmlBeanDefinitionReader loadB ...

  9. error: &#39;Can&#39;t connect to local MySQL server through socket &#39;/var/lib/mysql/mysql.sock&#39; (2)&#39;

    [root@luozhonghua ~]#   /usr/bin/mysqladmin -u root password 'aaaaaa' /usr/bin/mysqladmin: connect t ...

随机推荐

  1. 【Leetcode 220】 Contains Duplicate III

    问题描述:判断数组中是否存在<ai aj> abs(ai - aj)<=t  && abs(i - j) <=k: 问题分析:需要一个数据结构来维护满足条件k. ...

  2. 参加2016华为codecraft编程精英挑战赛后感

    2016年4月参加了华为的软件比赛. 关于比赛:给了一道图论的np-hard问题.刚开始完全不知道怎么入手,请教过师兄,自己也琢磨过,没有什么万全的解决方法.注意,这里说的是万全的办法.本科搞算法时候 ...

  3. C#模拟百度登录并到指定网站评论回帖(一)

    核心信息: 请求网址:  https://passport.baidu.com/v2/api/?login请求方法:  POST状态码:  HTTP/1.1 200 OK请求头  //用户代理 Use ...

  4. SAS进阶《深入解析SAS》之对多数据集的处理

    SAS进阶<深入解析SAS>之对多数据集的处理 1. 数据集的纵向串接: 数据集的纵向串接指的是,将两个或者多个数据集首尾相连,形成一个新的数据集. 据集的横向合并: 数据集的横向合并,指 ...

  5. Redis主从复制失败(master_link_status:down)

    今天配置redis主从复制时出现master_link_status:down提示. 首先打开slave的redis.conf配置文件,确定slaveof 和masterauth 两个选项配置是否正确 ...

  6. HashMap , TreeMap , TreeMap 默认排序

    Java代码  import java.util.HashMap; import java.util.LinkedHashMap; import java.util.Map; import java. ...

  7. CSS——规避脱标流和vertical-align

    规避脱标流: 1.尽量使用标准流. 2.标准流解决不了的使用浮动. 3.浮动解决不了的使用定位. 问题解决:嵌套盒子在不使用定位的情况下定位到右上角 <!DOCTYPE html> < ...

  8. HDU_1068_Girls and Boys_二分图匹配

    Girls and Boys Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. SSL协议提供的服务

    SSL协议提供的服务主要有: 1)认证用户和服务器,确保数据发送到正确的客户机和服务器: 2)加密数据以防止数据中途被窃取: 3)维护数据的完整性,确保数据在传输过程中不被改变.

  10. http通信流程

    Host https://www.charlesproxy.com Path / Notes SSL Proxying not enabled for this host. Enable in the ...