Intersecting Lines

http://poj.org/problem?id=1269

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 18897   Accepted: 8043

Description

We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

Input

The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

Output

There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".

Sample Input

5
0 0 4 4 0 4 4 0
5 0 7 6 1 0 2 3
5 0 7 6 3 -6 4 -3
2 0 2 27 1 5 18 5
0 3 4 0 1 2 2 5

Sample Output

INTERSECTING LINES OUTPUT
POINT 2.00 2.00
NONE
LINE
POINT 2.00 5.00
POINT 1.07 2.20
END OF OUTPUT

先判断是否平行,平行的话再判断是否共线,否则把向量转换成方程,计算交点

直线的一般式方程AX+BY+C=0中,A B C分别等于:
A = Y2 - Y1
B = X1 - X2
C = X2*Y1 - X1*Y2
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#define esp 0.00000001
using namespace std; struct Vector{
double x,y;
}; struct Line{
Vector s,e;
}line[]; double Cross(Vector a,Vector b,Vector c){
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
} int main(){
int n;
cin>>n;
Vector a,b,c,d;
double tmp;
cout<<"INTERSECTING LINES OUTPUT"<<endl;
for(int i=;i<=n;i++){
cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
tmp=(a.x-b.x)*(c.y-d.y)-(a.y-b.y)*(c.x-d.x);
if(fabs(tmp)<esp&&fabs(Cross(a,b,d))<esp){
cout<<"LINE"<<endl;
}
else if(fabs(tmp)<esp){
cout<<"NONE"<<endl;
}
else{
double a1=a.y-b.y,b1=b.x-a.x,c1=a.x*b.y-b.x*a.y;//c是叉积
double a2=c.y-d.y,b2=d.x-c.x,c2=c.x*d.y-d.x*c.y;
double x=(c2*b1-c1*b2)/(b2*a1-b1*a2);
double y=(a2*c1-a1*c2)/(b2*a1-b1*a2);
printf("POINT %.2f %.2f\n",x,y);
}
}
cout<<"END OF OUTPUT"<<endl;
}

Intersecting Lines(叉积,方程)的更多相关文章

  1. poj 1269 Intersecting Lines——叉积求直线交点坐标

    题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么 ...

  2. Intersecting Lines - POJ 1269(判断平面上两条直线的关系)

    分析:有三种关系,共线,平行,还有相交,共线和平行都可以使用叉积来进行判断(其实和斜率一样),相交需要解方程....在纸上比划比划就出来了....   代码如下: ================== ...

  3. Intersecting Lines POJ 1269

    题目大意:给出两条直线,每个直线上的两点,求这两条直线的位置关系:共线,平行,或相交,相交输出交点. 题目思路:主要在于求交点 F0(X)=a0x+b0y+c0==0; F1(X)=a1x+b1y+c ...

  4. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  5. POJ1269:Intersecting Lines(判断两条直线的关系)

    题目:POJ1269 题意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:直线相交判断.如果相交求交点. 首先先判断是否共线,之后判断是否平行,如果都不是就直接求交点 ...

  6. POJ 1269 Intersecting Lines --计算几何

    题意: 二维平面,给两条线段,判断形成的直线是否重合,或是相交于一点,或是不相交. 解法: 简单几何. 重合: 叉积为0,且一条线段的一个端点到另一条直线的距离为0 不相交: 不满足重合的情况下叉积为 ...

  7. POJ 1269 Intersecting Lines【判断直线相交】

    题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0) ...

  8. 简单几何(直线位置) POJ 1269 Intersecting Lines

    题目传送门 题意:判断两条直线的位置关系,共线或平行或相交 分析:先判断平行还是共线,最后就是相交.平行用叉积判断向量,共线的话也用叉积判断点,相交求交点 /********************* ...

  9. POJ 1269 Intersecting Lines(计算几何)

    题意:给定4个点的坐标,前2个点是一条线,后2个点是另一条线,求这两条线的关系,如果相交,就输出交点. 题解:先判断是否共线,我用的是叉积的性质,用了2遍就可以判断4个点是否共线了,在用斜率判断是否平 ...

随机推荐

  1. Kibana安装及使用

    1.Kibana介绍Kibana是一个基于浏览器页面的Elasticsearch前端展示工具.Kibana全部使用HTML语言和Javascript编写的. 2.安装配置Kibana下载地址:http ...

  2. hdu 1278 逃离迷宫

    逃离迷宫 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  3. API网关Kong系列(二)部署

    部署环境: [OS] centos 6.8(如果是centos6.5,请自行先升级到6.8,否则不支持docker) [Docker] Client version: 1.7.1 Client API ...

  4. javascript的焦点管理

    HTML5也添加了辅助管理DOM焦点的功能. 元素获得焦点的方式有页面加载,用户输入和代码中调用的focus()方法. 而document.activeElement属性保存着当前获得焦点的引用. v ...

  5. jQuery的get()用法

    这个方法主要是将jQuery对象或者jQuery对象集合转换成DOM对象或dom对象集合. get()方法中如果传递参数,表示将具体位置的jQuery对象转换成dom对象.如果没有参数,则表示返回所有 ...

  6. Oracle直方图的详细解析(转)

    Oracle直方图解析 一.    何谓直方图: 直方图是一种统计学上的工具,并非Oracle专有.通常用于对被管理对象的某个方面的质量情况进行管理,通常情况下它会表现为一种几何图形表,这个图形表是根 ...

  7. django框架ajax

    参考 博文https://www.cnblogs.com/yuanchenqi/articles/9070966.html Ajax 简单示例: file_put文件上传页面: <!DOCTYP ...

  8. ajax控制页面跳转

    一开始我是这么写的,一直报错,跳转路径解析不了,显示为问号: 前台html: <form> <table style="margin: 200px auto;"& ...

  9. Python常量工具类

    1.定义常量类constant.py # -*- coding: utf-8 -* """常量工具类 author: Jill usage: from constant ...

  10. 类unix系统同步目录,却不同步目录中文件

    rsync -av --del -f '+ */' -f '- *' src/ dst/;用此条命令即可同步同主机间不同目录到一个位置,或是同步道不同主机同位置. 或是用以下命令: ssh 10.18 ...