(学习这部分内容大约需要50分钟)

摘要

Gibbs采样是一种马尔科夫连蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法, 其中每个随机变量从给定剩余变量的条件分布迭代地重新采样. 它是在概率模型中执行后验推理的简单且常用的高效方法.

预备知识

学习Gibbs采样需要以下预备知识

学习目标

  • 知道Gibbs采样更新规则
  • 明白为什么 Gibbs 采样的稳态分布是模型分布.
  • 明白为什么 Gibbs 采样在变量紧密耦合时会变得低效.

核心资源

(阅读/观看其中一个资源)

免费

付费

  • Pattern Recognition and Machine Learning(PRML)
    简介: 一本研究生机器学习课程, 专注于贝叶斯方法
    位置: Section 11.3, pages 542-546
    网站
    作者: Christopher M. Bishop
    其他依赖知识:

  • Probabilistic Graphical Models: Principles and Techniques
    简介: 一本非常全面的概率AI研究生教材
    位置: Sections 12.3.1 (pages 505-507) and 12.3.3 (pages 512-515)
    网站
    作者: Daphne Koller,Nir Friedman
    其他依赖知识:

增补资源

(以下为可选内容, 你可能会发现它们很有用)

免费

  • Information Theory, Inference, and Learning Algorithms
    简介: 一本机器学习和信息论的研究生教材
    位置: Section 29.5, "Gibbs sampling," pages 370-371
    网站
    作者: David MacKay
    其他依赖知识:

    • Metropolis-Hastings算法
  • Machine learning summer school: Markov chain Monte Carlo (2009)
    简介: 一个 MCMC 方法视频教程
    位置: 69:40 to 77:34
    网站
    作者: Iain Murray
  • Computational Cognition Cheat Sheets (2013)
    简介: 认知科学家写的一些笔记
    位置: Bayesian Inference: Gibbs Sampling
    网站

付费

  • Machine Learning: a Probabilistic Perspective(MLAPP)
    简介: 一本非常全面的研究生机器学习教材
    位置: Section 24.2-24.2.2, pages 838-839
    网站
    作者: Kevin P. Murphy

相关知识

  • Gibbs采样可以被看作 Metropolis-Hastings 算法的特例

  • 简单 Gibbs 采样常常 mix 得很慢. 以下是一些改进版本:

    • block Gibbs sampling: 一次采样多个随机变量.
    • collapsed Gibbs sampling: 一些随机变量被解析地积分掉了

    Slice sampling 是一类特殊的 Gibbs 采样, 适合从没有解析形式的单变量分布中采样.

  • 我们可以使用spectral graph理论分析 mixing 率.


返回贝叶斯机器学习路线图

Gibbs采样的更多相关文章

  1. MC, MCMC, Gibbs采样 原理&实现(in R)

    本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例 ...

  2. 如何做Gibbs采样(how to do gibbs-sampling)

    原文地址:<如何做Gibbs采样(how to do gibbs-sampling)> 随机模拟 随机模拟(或者统计模拟)方法最早有数学家乌拉姆提出,又称做蒙特卡洛方法.蒙特卡洛是一个著名 ...

  3. MCMC(四)Gibbs采样

    MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(三)MCMC采样和M-H采样中,我们讲到了M-H采样已经可以很好 ...

  4. 文本主题模型之LDA(二) LDA求解之Gibbs采样算法

    文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法(TODO) 本文是LDA主题模型的第二篇, ...

  5. 关于LDA的gibbs采样,为什么可以获得正确的样本?

    算法里面是随机初始了一个分布,然后进行采样,然后根据每次采样的结果去更新分布,之后接着采样直到收敛. 1.首先明确一下MCMC方法. 当我们面对一个未知或者复杂的分布时,我们经常使用MCMC方法来进行 ...

  6. Gibbs 采样的应用

    Gibbs 采样的最大作用在于使得对高维连续概率分布的抽样由复杂变得简单. 可能的应用: 计算高维连续概率分布函数的数学期望, Gibbs 采样得到 n 个值,再取均值: 比如用于 RBM:

  7. Gibbs 采样定理的若干证明

    坐标平面上的三点,A(x1,y1),B(x1,y2),C(x2,y1),假设有概率分布 p(x,y)(P(X=x,Y=y) 联合概率),则根据联合概率与条件概率的关系,则有如下两个等式: {p(x1, ...

  8. MCMC:Gibbs 采样(matlab 实现)

    MCMC: The Gibbs Sampler 多元高斯分布的边缘概率和条件概率 Marginal and conditional distributions of multivariate norm ...

  9. 随机采样和随机模拟:吉布斯采样Gibbs Sampling实现文档分类

    http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实 ...

随机推荐

  1. Crystal Reports 版权疑问

    以前一直以为Crystal Reports是微软公司的产品,由于最近公司项目用到Crystal Reports,花了点时间研究了下它,才发现其实不然. 历史: 最开始的开发公司名为Crystal Se ...

  2. spring boot微服务改造冲突

    1.报错: 13:57:49.959 [main] ERROR org.springframework.boot.SpringApplication - Application startup fai ...

  3. 根据时间获取最新数据 SQL(每一个人或者每一项)

    -- 方法1 select a.* from table1 a from table1 b where b.name=a.name and b.gdtime>a.gdtime) -- 方法2 s ...

  4. 三篇文章了解 TiDB 技术内幕 —— 谈调度

    任何一个复杂的系统,用户感知到的都只是冰山一角,数据库也不例外. 前两篇文章介绍了 TiKV.TiDB 的基本概念以及一些核心功能的实现原理,这两个组件一个负责 KV 存储,一个负责 SQL 引擎,都 ...

  5. socket阻塞与非阻塞,同步与异步、I/O模型

    socket阻塞与非阻塞,同步与异步 1. 概念理解 在进行网络编程时,我们常常见到同步(Sync)/异步(Async),阻塞(Block)/非阻塞(Unblock)四种调用方式:同步:      所 ...

  6. android尺子的自定义view——RulerView

    项目中用到自定义尺子的样式: 原代码在github上找的,地址:https://github.com/QQabby/HorizontalRuler 原效果为 因为跟自己要使用的view稍有不同  所以 ...

  7. Java 内部线程

    InsttoolCacheScheduler_ Worker-2 Quartz InsttoolCacheScheduler_Worker-2线程就是ThreadPool线程的一个简单实现,它主要负责 ...

  8. 推荐vue.js、layer.js、axios.js

    都是很简单又很实用的东西. vue.js,前端双向绑定框架. layer.js,前端遮罩层框架.(layui的一部分,可单独使用) axios.js,异步请求框架,用起来比jQuery的ajax舒服一 ...

  9. e785. 监听JList中项的变动

    When the set of items in a list component is changed, a list data event is fired. // Create a list t ...

  10. 异常之交叉编译---arm-vfp-linux-gnu/bin/ld: cgic.o: Relocations in generic ELF (EM: 3)

    /opt/arm-2009q1/bin/../lib/gcc/arm-none-linux-gnueabi/4.3.3/../../../../arm-none-linux-gnueabi/bin/l ...