https://vjudge.net/problem/UVALive-4080

题意:
给出一个n个结点m条边的无向图,每条边上有一个正权。令c等于每对结点的最短路长度之和。不连通的两点的最短路长度视为L。

求出初始时的最短路长度之和以及删除一条边后最大的最短路长度之和。

思路:

最短路树其实很简单,就是用一个二维数组记录某个源点出发所经过的边,如$belong[s][i]$就说明源点s出发经过了i这条边。这样做的好处是当我们枚举删除的边的时候,如果它不在当前源点的最短路树上,那么对于最短路不会有影响,如果在,那么此时就要重新跑最短路。这样可以节约很多时间。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
#include<bitset>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const ll INF = (ll)<<;
const int maxn=+; int n,m,tot,l;
ll ans;
int head[maxn];
bool vis[maxn],del[],belong[maxn][];
ll d[maxn],w[maxn];
int p[maxn]; struct node
{
int id,v,d,next;
}e[maxn*maxn]; struct HeapNode
{
int u; ll d;
HeapNode(int u, ll d):u(u),d(d){}
bool operator<(const HeapNode& rhs) const
{
return d>rhs.d;
}
}; void addEdge(int id, int u, int v, int d)
{
e[tot].id=id;
e[tot].d=d;
e[tot].v=v;
e[tot].next=head[u];
head[u]=tot++;
} void dijkstra1(int s)
{
priority_queue<HeapNode> Q;
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
Q.push(HeapNode(s,));
while(!Q.empty())
{
HeapNode x=Q.top(); Q.pop();
int u=x.u;
if(vis[u]) continue;
belong[s][p[u]]=true;
vis[u]=true;
for(int i=head[u];i!=-;i=e[i].next)
{
int v=e[i].v;
if(d[v]>d[u]+e[i].d)
{
d[v]=d[u]+e[i].d;
p[v]=e[i].id;
Q.push(HeapNode(v,d[v]));
}
}
}
for(int i=;i<=n;i++)
{
if(d[i]==INF)
{
w[s]+=l;
ans+=l;
}
else
{
w[s]+=d[i];
ans+=d[i];
}
}
} ll dijkstra2(int s)
{
priority_queue<HeapNode> Q;
memset(vis,false,sizeof(vis));
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
Q.push(HeapNode(s,));
while(!Q.empty())
{
HeapNode x=Q.top(); Q.pop();
int u=x.u;
if(vis[u]) continue;
vis[u]=true;
for(int i=head[u];i!=-;i=e[i].next)
{
int v=e[i].v;
if(del[e[i].id]) continue;
if(d[v]>d[u]+e[i].d)
{
d[v]=d[u]+e[i].d;
Q.push(HeapNode(v,d[v]));
}
}
}
ll tmp=;
for(int i=;i<=n;i++)
{
if(d[i]==INF) tmp+=l;
else tmp+=d[i];
}
return tmp;
} int main()
{
//freopen("in.txt","r",stdin);
while(~scanf("%d%d%d",&n,&m,&l))
{
tot=;
memset(head,-,sizeof(head));
memset(del,false,sizeof(del));
memset(belong,false,sizeof(belong));
memset(w,,sizeof(w));
for(int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addEdge(i,u,v,w);
addEdge(i,v,u,w);
}
ans=;
for(int i=;i<=n;i++) dijkstra1(i);
printf("%lld ",ans);
ans=;
for(int i=;i<=m;i++)
{
ll tmp=;
del[i]=true;
for(int j=;j<=n;j++)
{
if(belong[j][i]) tmp+=dijkstra2(j);
else tmp+=w[j];
}
del[i]=false;
ans=max(ans,tmp);
}
printf("%lld\n",ans);
}
return ;
}

LA 4080 战争和物流(最短路树)的更多相关文章

  1. UVA 4080 Warfare And Logistics 战争与物流 (最短路树,变形)

    题意: 给一个无向图,n个点,m条边,可不连通,可重边,可多余边.两个问题,第一问:求任意点对之间最短距离之和.第二问:必须删除一条边,再求第一问,使得结果变得更大. 思路: 其实都是在求最短路的过程 ...

  2. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

  3. UVALive 4080 Warfare And Logistics (最短路树)

    很多的边会被删掉,需要排除一些干扰进行优化. 和UVA - 1279 Asteroid Rangers类似,本题最关键的地方在于,对于一个单源的最短路径来说,如果最短路树上的边没有改变的话,那么最短路 ...

  4. hdu 3409 最短路树+树形dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3409 参考博客:http://www.cnblogs.com/woaishizhan/p/318981 ...

  5. LA4080/UVa1416 Warfare And Logistics 最短路树

    题目大意: 求图中两两点对最短距离之和 允许你删除一条边,让你最大化删除这个边之后的图中两两点对最短距离之和. 暴力:每次枚举删除哪条边,以每个点为源点做一次最短路,复杂度\(O(NM^2logN)\ ...

  6. BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树

    题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...

  7. BZOJ4356Ceoi2014 Wall——堆优化dijkstra+最短路树

    题目描述 给出一个N*M的网格图,有一些方格里面存在城市,其中首都位于网格图的左上角.你可以沿着网络的边界走,要求你走的路线是一个环并且所有城市都要被你走出来的环圈起来,即想从方格图的外面走到任意一个 ...

  8. 51nod 1443 路径和树(最短路树)

    题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...

  9. Berland and the Shortest Paths CodeForces - 1005F(最短路树)

    最短路树就是用bfs走一遍就可以了 d[v] = d[u] + 1 表示v是u的前驱边 然后遍历每个结点 存下它的前驱边 再用dfs遍历每个结点 依次取每个结点的某个前驱边即可 #include &l ...

随机推荐

  1. 迁移到 Linux:使用 sudo | Linux 中国

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/F8qG7f9YD02Pe/article/details/80976600 https://mmbi ...

  2. postman 安装,对elasticsearch进行请求

    1  使用postman对elasticsearch进行测试 :下载插件: https://www.getpostman.com/apps ,下载时exe文件,双击自动安装,首次打开注册.下面就可以使 ...

  3. 最简单的css实现页面宽度自适应

    <div class="rxs"> <div class="rxleft"> 第一段内容,可以是任何html标签 </div> ...

  4. iOS UI基础-4.1应用程序管理 字典转Model

    用模型取代字典 使用字典的坏处 一般情况下,设置数据和取出数据都使用“字符串类型的key”,编写这些key时,编辑器没有智能提示,需要手敲 dict[@"name"] = @&qu ...

  5. Mysql的group by语句

    如上图查询结果,因为group by后面的字段是的分组的依据字段,所以select子句中只有是group by后面的字段,或者是聚集函数才有意义.然而mysql居然可以在select子句中出现不在gr ...

  6. jstat命令查看tomcat进程提示进程没找到(PID not found

    今天遇到了一个小问题,我想用jstat命令查看tomcat进程(PID=24493)的内存使用情况,命令如下:jstat -gc 24493. 然后就报错了,错误提示信息为 24493 not fou ...

  7. Python 为什么sys.stdout.write 输出时后面总跟一个数字

    sys.stdout 是标准输出文件.write就是往这个文件写数据. 合起来就是打印数据到标准输出 因为-在交互模式下会输出函数返回值,而write会返回输出的字符数量.在命令行里不会显示

  8. sql的函数和存储过程的区别

    本文部分内容转自http://www.cnblogs.com/lengbingshy/archive/2010/02/25/1673476.html 本质上没区别.只是函数有如:只能返回一个变量的限制 ...

  9. Centos7下PHP的卸载与安装nginx

    Centos7下PHP的卸载与安装nginx CentOS上PHP完全卸载,想把PHP卸载干净,直接用yum的remove命令是不行的,需要查看有多少rpm包,然后按照依赖顺序逐一卸载. 1.首先查看 ...

  10. Linux中Postfix邮件安装Maildrop(八)

    Postfix使用maildrop投递邮件 Maildrop是本地邮件投递代理(MDA), 支持过滤(/etc/maildroprc).投递和磁盘限额(Quota)功能. Maildrop是一个使用C ...