NumPy

From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1

  • Your First NumPy Array

# Create list baseball
baseball = [180, 215, 210, 210, 188, 176, 209, 200]

# Import the numpy package as np
import numpy as np

# Create a numpy array from baseball: np_baseball
np_baseball = np.array(baseball)

# Print out type of np_baseball
print(type(np_baseball))

  • Baseball players' height

# height is available as a regular list

height =  [74, 74, 72, 72, 73, 69, 69, 71, 76, 71, 73, 73, 74, 74, 69, 70, 73, 75, 78, 79, 76, 74, 76, 72, 71, 75, 77, 74, 73, 74, 78, 73, 75, 73, 75, 75, 74, 69, 71, 74, 73, 73, 76, 74, 74, 70, 72, 77, 74, 70, 73, 75, 76, 76, 78, 74, 74, 76, 77, 81, 78, 75, 77, 75, 76, 74, 72, 72, 75, 73, 73, 73, 70, 70, 70, 76, 68, 71, 72, 75, 75, 75, 75, 68, 74, 78, 71, 73, 76, 74, 74, 79, 75, 73, 76, 74, 74, 73, 72, 74, 73, 74, 72, 73, 69, 72, 73, 75, 75, 73, 72, 72, 76, 74, 72, 77, 74, 77, 75, 76, 80, 74, 74, 75, 78, 73, 73, 74, 75, 76, 71, 73, 74, 76, 76, 74, 73, 74, 70, 72, 73, 73, 73, 73, 71, 74, 74, 72, 74, 71, 74, 73, 75, 75, 79, 73, 75, 76, 74, 76, 78, 74, 76, 72, 74, 76, 74, 75, 78, 75, 72, 74, 72, 74, 70, 71, 70, 75, 71, 71, 73, 72, 71, 73, 72, 75, 74, 74, 75, 73, 77, 73, 76, 75, 74, 76, 75, 73, 71, 76, 75, 72, 71, 77, 73, 74, 71, 72, 74, 75, 73, 72, 75, 75, 74, 72, 74, 71, 70, 74, 77, 77, 75, 75, 78, 75, 76, 73, 75, 75, 79, 77, 76, 71, 75, 74, 69, 71, 76, 72, 72, 70, 72, 73, 71, 72, 71, 73, 72, 73, 74, 74, 72, 75, 74, 74, 77, 75, 73, 72, 71, 74, 77, 75, 75, 75, 78, 78, 74, 76, 78, 76, 70, 72, 80, 74, 74, 71, 70, 72, 71, 74, 71, 72, 71, 74, 69, 76, 75, 75, 76, 73, 76, 73, 77, 73, 72, 72, 77, 77, 71, 74, 74, 73, 78, 75, 73, 70, 74, 72, 73, 73, 75, 75, 74, 76, 73, 74, 75, 75, 72, 73, 73, 72, 74, 78, 76, 73, 74, 75, 70, 75, 71, 72, 78, 75, 73, 73, 71, 75, 77, 72, 69, 73, 74, 72, 70, 75, 70, 72, 72, 74, 73, 74, 76, 75, 80, 72, 75, 73, 74, 74, 73, 75, 75, 71, 73, 75, 74, 74, 72, 74, 74, 74, 73, 76, 75, 72, 73, 73, 73, 72, 72, 72, 72, 71, 75, 75, 74, 73, 75, 79, 74, 76, 73, 74, 74, 72, 74, 74, 75, 78, 74, 74, 74, 77, 70, 73, 74, 73, 71, 75, 71, 72, 77, 74, 70, 77, 73, 72, 76, 71, 76, 78, 75, 73, 78, 74, 79, 75, 76, 72, 75, 75, 70, 72, 70, 74, 71, 76, 73, 76, 71, 69, 72, 72, 69, 73, 69, 73, 74, 74, 72, 71, 72, 72, 76, 76, 76, 74, 76, 75, 71, 72, 71, 73, 75, 76, 75, 71, 75, 74, 72, 73, 73, 73, 73, 76, 72, 76, 73, 73, 73, 75, 75, 77, 73, 72, 75, 70, 74, 72, 80, 71, 71, 74, 74, 73, 75, 76, 73, 77, 72, 73, 77, 76, 71, 75, 73, 74, 77, 71, 72, 73, 69, 73, 70, 74, 76, 73, 73, 75, 73, 79, 74, 73, 74, 77, 75, 74, 73, 77, 73, 77, 74, 74, 73, 77, 74, 77, 75, 77, 75, 71, 74, 70, 79, 72, 72, 70, 74, 74, 72, 73, 72, 74, 74, 76, 82, 74, 74, 70, 73, 73, 74, 77, 72, 76, 73, 73, 72, 74, 74, 71, 72, 75, 74, 74, 77, 70, 71, 73, 76, 71, 75, 74, 72, 76, 79, 76, 73, 76, 78, 75, 76, 72, 72, 73, 73, 75, 71, 76, 70, 75, 74, 75, 73, 71, 71, 72, 73, 73, 72, 69, 73, 78, 71, 73, 75, 76, 70, 74, 77, 75, 79, 72, 77, 73, 75, 75, 75, 73, 73, 76, 77, 75, 70, 71, 71, 75, 74, 69, 70, 75, 72, 75, 73, 72, 72, 72, 76, 75, 74, 69, 73, 72, 72, 75, 77, 76, 80, 77, 76, 79, 71, 75, 73, 76, 77, 73, 76, 70, 75, 73, 75, 70, 69, 71, 72, 72, 73, 70, 70, 73, 76, 75, 72, 73, 79, 71, 72, 74, 74, 74, 72, 76, 76, 72, 72, 71, 72, 72, 70, 77, 74, 72, 76, 71, 76, 71, 73, 70, 73, 73, 72, 71, 71, 71, 72, 72, 74, 74, 74, 71, 72, 75, 72, 71, 72, 72, 72, 72, 74, 74, 77, 75, 73, 75, 73, 76, 72, 77, 75, 72, 71, 71, 75, 72, 73, 73, 71, 70, 75, 71, 76, 73, 68, 71, 72, 74, 77, 72, 76, 78, 81, 72, 73, 76, 72, 72, 74, 76, 73, 76, 75, 70, 71, 74, 72, 73, 76, 76, 73, 71, 68, 71, 71, 74, 77, 69, 72, 76, 75, 76, 75, 76, 72, 74, 76, 74, 72, 75, 78, 77, 70, 72, 79, 74, 71, 68, 77, 75, 71, 72, 70, 72, 72, 73, 72, 74, 72, 72, 75, 72, 73, 74, 72, 78, 75, 72, 74, 75, 75, 76, 74, 74, 73, 74, 71, 74, 75, 76, 74, 76, 76, 73, 75, 75, 74, 68, 72, 75, 71, 70, 72, 73, 72, 75, 74, 70, 76, 71, 82, 72, 73, 74, 71, 75, 77, 72, 74, 72, 73, 78, 77, 73, 73, 73, 73, 73, 76, 75, 70, 73, 72, 73, 75, 74, 73, 73, 76, 73, 75, 70, 77, 72, 77, 74, 75, 75, 75, 75, 72, 74, 71, 76, 71, 75, 76, 83, 75, 74, 76, 72, 72, 75, 75, 72, 77, 73, 72, 70, 74, 72, 74, 72, 71, 70, 71, 76, 74, 76, 74, 74, 74, 75, 75, 71, 71, 74, 77, 71, 74, 75, 77, 76, 74, 76, 72, 71, 72, 75, 73, 68, 72, 69, 73, 73, 75, 70, 70, 74, 75, 74, 74, 73, 74, 75, 77, 73, 74, 76, 74, 75, 73, 76, 78, 75, 73, 77, 74, 72, 74, 72, 71, 73, 75, 73, 67, 67, 76, 74, 73, 70, 75, 70, 72, 77, 79, 78, 74, 75, 75, 78, 76, 75, 69, 75, 72, 75, 73, 74, 75, 75, 73]

# Import numpy
import numpy as np

# Create a numpy array from height: np_height
np_height = np.array(height)

# Print out np_height
print(np_height)

# Convert np_height from inches to meters: np_height_m
np_height_m = np_height * 0.0254

# Print np_height_m
print(np_height_m)

  • Baseball player's BMI

# height and weight are available as a regular lists

# Import numpy
import numpy as np

# Create array from height with correct units: np_height_m
np_height_m = np.array(height) * 0.0254

# Create array from weight with correct units: np_weight_kg
np_weight_kg = np.array(weight) * 0.453592

# Calculate the BMI: bmi
bmi = np_weight_kg/np_height_m ** 2

# Print out bmi
print(bmi)

  • Lightweight baseball players

To subset both regular Python lists and numpy arrays, you can use square brackets:

x = [4 , 9 , 6, 3, 1]
x[1]
import numpy as np
y = np.array(x)
y[1]

For numpy specifically, you can also use boolean numpy arrays:

high = y > 5
y[high]

# height and weight are available as a regular lists

# Import numpy
import numpy as np

# Calculate the BMI: bmi
np_height_m = np.array(height) * 0.0254
np_weight_kg = np.array(weight) * 0.453592
bmi = np_weight_kg / np_height_m ** 2

# Create the light array
light = bmi < 21

# Print out light
print(light)

# Print out BMIs of all baseball players whose BMI is below 21
print(bmi[light])

  • NumPy Side Effects

As Filip explained before, numpy is great for doing vector arithmetic. If you compare its functionality with regular Python lists, however, some things have changed.

First of all, numpy arrays cannot contain elements with different types. If you try to build such a list, some of the elements' types are changed to end up with a homogeneous list. This is known astype coercion.

Second, the typical arithmetic operators, such as +-* and / have a different meaning for regular Python lists and numpy arrays.

Have a look at this line of code:

np.array([True, 1, 2]) + np.array([3, 4, False])

Output:

array([4, 5, 2])

  • Subsetting NumPy Arrays

Python lists and numpy arrays sometimes behave differently,but subsetting (using the square bracket notation on lists or arrays) works exactly the same.

x = ["a", "b", "c"]
x[1] np_x = np.array(x)
np_x[1]

# height and weight are available as a regular lists

# Import numpy
import numpy as np

# Store weight and height lists as numpy arrays
np_weight = np.array(weight)
np_height = np.array(height)

# Print out the np_weight at index 50
print(np_weight[50])

# Print out sub-array of np_height: index 100 up to and including index 110
print(np_height[100:111])

Intro to Python for Data Science Learning 6 - NumPy的更多相关文章

  1. Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics

    NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...

  2. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 2 - List

    List from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-list ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. 【BZOJ5094】硬盘检测 概率

    [BZOJ5094]硬盘检测 Description 很久很久以前,小Q买了一个大小为n单元的硬盘,并往里随机写入了n个32位无符号整数.因为时间过去太久,硬盘上的容量字眼早已模糊不清,小Q也早已忘记 ...

  2. python模块路径

    Python会在以下路径中搜索它想要寻找的模块: 1. 程序所在的文件夹 2. 标准库的安装路径 3. 操作系统环境变量PYTHONPATH所包含的路径 将自定义库的路径添加到Python的库路径中去 ...

  3. 对Aspose.Cells Excel文件操作的扩展

    工作中对Excel操作的需求很是常见,今天其他项目组的同事在进行Excel数据导入时,使用Aspose.Cells Excel 遇到了些问题. 刚好闲来不忙,回想自己用过的Excel文件操作,有NPO ...

  4. 存储opline的内存地址可以实时跟踪opcode的执行

    static intphp_handler(request_rec *r) { /* Initiliaze the context */ php_struct * volatile ctx; void ...

  5. 字符串匹配-KMP

    节选自 https://www.cnblogs.com/zhangtianq/p/5839909.html 字符串匹配 KMP O(m+n) O原来的暴力算法 当不匹配的时候 尽管之前文本串和模式串已 ...

  6. 《机器学习实战》2.2.2分析数据:使用matplotlib创建散点图

    #输出散点图 def f(): datingDataMat,datingLabels = file2matrix("datingTestSet3.txt") fig = plt.f ...

  7. 汉诺塔问题(The Tower of Hanoi)的递归算法与非递归算法

    非递归算法: 根据圆盘的数量确定柱子的排放顺序: 若n为偶数,按顺时针方向依次摆放 A B C: 若n为奇数,按顺时针方向依次摆放 A C B. 然后进行如下操作: (1)按顺时针方向把圆盘1从现在的 ...

  8. pycurl实例详解

    Pycurl是Python的libcurl接口.liburl是客户端的URL传输库,它支持FTP,FTPS,HTTP,HTTPS,TELNET,LDAP等诸多协议,同时支持HTTP认证,代理,FTP上 ...

  9. PHPExcel exception: “Could not close zip file … ”报错

    Q: PHPExcel exception: “Could not close zip file … ” A:目录没有写权限,chmod 对$phpExcel->save($dir)中报错路径设 ...

  10. ICMP报文

    类型:表示ICMP消息类型 代码:表示同一消息的不同信息 其他是时间戳或者标识符及序列号 类型 编码 描述   0 0 Echo Reply 3 0 网络不可达 3 1 主机不可达 3 2 协议不可达 ...