/*
2014.3.6
这题说的是给你了一根木棒 然后 n 个点(线段上的点)
然后计算 在这 n个点上都切下去的 最小花费
举个例子
100
3
25 50 75
如果 从 25 开始切 然后切 50 75 则花费是 100 + 75 +50= 225
如果 从 50 开始切 然后切 25 75 则花费 100 +50 +50 =200
相对 更优一些
解题: 可以发现 当 从某个点坐标为 D 切下去后则从0到D的 部分和从 D到 I 的 部分就没有了关系
因此 得到状态转移的 公式
dp[i][j]=min(dp[i][k]+dp[k][j]);
得解
*/ #include<cstdio>
#include<string.h>
#include<iostream>
using namespace std;
int dp[100][100];
int W[100];
int main()
{
int N,i,j;
W[0]=0;
while(scanf("%d",&N)==1&&N!=0){
int t; scanf("%d",&t);W[t+1]=N;
for( i=1;i<=t;i++)
{
scanf("%d",&W[i]);
dp[i-1][i]=W[i]-W[i-1];
}
t++;
dp[t-1][t]=W[t]-W[t-1];
for(i=0;i+2<=t;i++)
dp[i][i+2]=dp[i][i+1]+dp[i+1][i+2];
for(i=0;i+1<=t;i++) dp[i][i+1]=0; for(int k=3;k<=t;k++) for(i=0;i+k<=t;i++)
{
int c=i+k; dp[i][i+k]=10000000; for(int j=i+1;j<c;j++) if(dp[i][c]>(dp[i][j]+dp[j][c]+W[c]-W[i])){ dp[i][c]=dp[i][j]+dp[j][c]+W[c]-W[i];
} } printf("The minimum cutting is %d.\n",dp[0][t]);
} return 0;
}

uva10003的更多相关文章

  1. uva10003 - Cutting Sticks(简单动规)

    /* * Author: Bingo * Created Time: 2015/2/13 18:33:03 * File Name: uva10003.cpp */ #include <iost ...

  2. UVA-10003 Cutting Sticks 动态规划 找分界点k的动规

    题目链接:https://cn.vjudge.net/problem/UVA-10003 题意 有根棍子,上面有些分割点(n<50),每次按分割点切割棍子时,费用为当前棍子的长度. 问有什么样的 ...

  3. uva10003 Cutting Sticks

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  4. uva10003 区间DP

    很清晰的区间dp问题.d(i,j)表示断点i到断点j的最小费用,由于开头和结尾也是断点,所以应该加入断点数组,即 cut[0]=0; cut[n+1]=len; 边界就是d(i,i+1)=0; 转移方 ...

  5. Uva 437 巴比伦塔 && UVA10003

    要求底面严格小于它下方立方体的长宽,求出最高情况,一块石头可以多次使用 用结构体记录一块石头的三种放置情况,按面积排序. dp[i] = max(dp[i],dp[j] + block[i].high ...

  6. UVA10003 【Cutting Sticks】

    [分析] 设d(i,j)为切割小木棍i-j的最优费用,则d(i,j)=min{d(i,k)+d(k,j)|i<k<j}+a[j]-a[i],其 中最后一项a[j]-a[i]代表第一刀的费用 ...

  7. UVa 10003 切木棍(区间DP+最优矩阵链乘)

    https://vjudge.net/problem/UVA-10003 题意: 有一根长度为L的棍子,还有n个切割点的位置.你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割费用最小.每 ...

  8. 简单Dp----最长公共子序列,DAG最长路,简单区间DP等

    /* uva 111 * 题意: * 顺序有变化的最长公共子序列: * 模板: */ #include<iostream> #include<cstdio> #include& ...

  9. [总结-动态规划]经典DP状态设定和转移方程

    马上区域赛,发现DP太弱,赶紧复习补上. #普通DP CodeForces-546D Soldier and Number Game 筛法+动态规划 待补 UVALive-8078 Bracket S ...

随机推荐

  1. parent.relativePath' points at wrong local POM

    这个错误通常是下载了子项目,没有把父项目下载下来. 子项目要依赖父项目的pom The relative path of the parent pom.xml file within the chec ...

  2. Java.Util.List(List接口)

    equals方法 equals(Object o) 方法用来比较指定的对象与列表是否相等,当且仅当指定的对象也是一个列表.两个列表有相同的大小,并且两个列表中的所有相应的元素对相等时才返回 true. ...

  3. 转基于概率的矩阵分解原理详解(PMF)

    上一篇博客讲到了推荐系统中常用的矩阵分解方法,RegularizedMF是对BasicMF的优化,而PMF是在RegularizedMF的基础上,引入概率模型进一步优化.假设用户U和项目V的特征矩阵均 ...

  4. python3中如何区分一个函数和方法

    一般情况下,单独写一个def func():表示一个函数,如果写在类里面是一个方法.但是不完全准确. class Foo(object): def fetch(self): pass print(Fo ...

  5. scrapy-redis的使用与解析

      scrapy-redis是一个基于redis的scrapy组件,通过它可以快速实现简单分布式爬虫程序,该组件本质上提供了三大功能: scheduler - 调度器 dupefilter - URL ...

  6. Solve minGW g++ has stopped working 程序停止运行

    之前在机子装了个很早版本的MinGW,苦于不支持c++11,所以打算卸载掉安装个新版本的.可是网上找了很多版本装好后,编译成功,运行的时候总是弹出 *.exe has stopped working的 ...

  7. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  8. JSTL 学习

    对于页面访问数据的统计,可以使用内置对象的相应方法进行计数工作,这个对象要在jsp对象的整个生命周期中setAttribute()和getAttribute()application.setAttri ...

  9. Why should we typedef a struct so often in C? - Stack Overflow

    https://stackoverflow.com/questions/252780/why-should-we-typedef-a-struct-so-often-in-c As Greg Hewg ...

  10. Hello Redis - Voting on articles

    Redis in Action JOSIAH L. CARLSON MANNING Shelter Island ONE_WEEK_IN_SECONDS = 7 * 86400 VOTE_SCORE ...