Tourist

Time Limit: 1000MS Memory Limit: 65536K

Total Submissions: 1503 Accepted: 617

Description

A lazy tourist wants to visit as many interesting locations in a city as possible without going one step further than necessary. Starting from his hotel, located in the north-west corner of city, he intends to take a walk to the south-east corner of the city and then walk back. When walking to the south-east corner, he will only walk east or south, and when walking back to the north-west corner, he will only walk north or west. After studying the city map he realizes that the task is not so simple because some areas are blocked. Therefore he has kindly asked you to write a program to solve his problem.

Given the city map (a 2D grid) where the interesting locations and blocked areas are marked, determine the maximum number of interesting locations he can visit. Locations visited twice are only counted once.

Input

The first line in the input contains the number of test cases (at most 20). Then follow the cases. Each case starts with a line containing two integers, W and H (2 ≤ W, H ≤ 100), the width and the height of the city map. Then follow H lines, each containing a string with W characters with the following meaning:

‘.’ Walkable area

‘*’ Interesting location (also walkable area)

‘#’ Blocked area

You may assume that the upper-left corner (start and end point) and lower-right corner (turning point) are walkable, and that a walkable path of length H + W - 2 exists between them.

Output

For each test case, output a line containing a single integer: the maximum number of interesting locations the lazy tourist can visit.

Sample Input

2

9 7

*……..

…..**#.

..*…#

..####*#.

..#.*#.

…#**…

*……..

5 5

...

*###.

..*

.###*

...

Sample Output

7

8

经常写这种在一个矩阵里从左上角走到右下角,只能向下和向右走,这种是一个水DP。这道题目就是这类题目的升级类型。就是走到右下角还要返回左上角,以前走过的景点返回时走过都不算。我一开始天真的以为先求左上角到右下角的DP,再把图变一下,求右下角到左上角的DP,这样第二个样例就过不了。所以就要换一种方式,去的和来的不能分开DP,只能将他们和在一起才能得到正确的解。看了题解,状态是DP[i][j][k],表示到第i条斜线,去的路的横坐标是j,来的路的横坐标是k。还有的解法是i是第几步。

可以看出,如果一道题目的解法是动态规划,那么一定有其相应的状态转移方程,不能局限于题目的给的条件,

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h> using namespace std;
int dp[205][105][105];
int n,m;
int t;
char a[105][105];
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
for(int i=0;i<n;i++)
scanf("%s",a[i]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=m+n-1;i++)
{
for(int j=0;j<n;j++)
{
for(int k=0;k<n;k++)
{
int y1=(i-1)-j;
if(y1<0)
continue;
if(y1>=m)
continue;
int y2=(i-1)-k;
if(y2<0)
continue;
if(y2>=m)
continue;
if(a[j][y1]=='#'||a[k][y2]=='#')
{dp[i][j][k]=0;continue;}
int ans=-2;
if(j-1>=0)
ans=max(ans,dp[i-1][j-1][k]);
if(k-1>=0)
ans=max(ans,dp[i-1][j][k-1]);
if(k-1>=0&&j-1>=0)
ans=max(ans,dp[i-1][j-1][k-1]);
ans=max(ans,dp[i-1][j][k]);
if(ans==-1)
{dp[i][j][k]=-1;continue;}
else
dp[i][j][k]=ans;
if(a[j][y1]=='*'&&y1!=y2)
dp[i][j][k]++;
if(a[k][y2]=='*'&&y1!=y2)
dp[i][j][k]++;
if(a[k][y2]=='*'&&a[j][y1]=='*'&&y1==y2)
dp[i][j][k]++;
}
}
}
printf("%d\n",dp[m+n-1][n-1][n-1]); }
return 0;
}

HOJ 2133&POJ 2964 Tourist(动态规划)的更多相关文章

  1. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

  2. poj 3783 Balls 动态规划 100层楼投鸡蛋问题

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4098409.html 题目链接:poj 3783 Balls 动态规划 100层楼投鸡蛋问题 ...

  3. HOJ 2148&POJ 2680(DP递推,加大数运算)

    Computer Transformation Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4561 Accepted: 17 ...

  4. poj 2229 一道动态规划思维题

    http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动 ...

  5. [POJ 2063] Investment (动态规划)

    题目链接:http://poj.org/problem?id=2063 题意:银行每年提供d种债券,每种债券需要付出p[i]块钱,然后一年的收入是v[i],到期后我们把本金+收入取出来作为下一年度本金 ...

  6. [POJ 2923] Relocation (动态规划 状态压缩)

    题目链接:http://poj.org/problem?id=2923 题目的大概意思是,有两辆车a和b,a车的最大承重为A,b车的最大承重为B.有n个家具需要从一个地方搬运到另一个地方,两辆车同时开 ...

  7. POJ 1088 滑雪 -- 动态规划

    题目地址:http://poj.org/problem?id=1088 Description Michael喜欢滑雪百这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当 ...

  8. poj 1159 Palindrome - 动态规划

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well ...

  9. poj 2385【动态规划】

    poj 2385 Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14007   Accepte ...

随机推荐

  1. 5种实现垂直居中css

    摘要: 在我们制作页面的时候经常会遇到内容垂直居中的需求,今天分享5种垂直居中的方法,每种方法都有自己的优缺点,可以选择自己喜欢的方式.以下代码都经过本人亲自测试. line-height: < ...

  2. python使用paramiko自动化部署linux程序

    使用paramiko模块,比os模块和command模块更加的兼容各种环境.后面两个只能在服务器本机 执行,此模块写得python文件无论是在本地还是服务器本身上运行,都能兼容. paramiko模块 ...

  3. Android安装器学习笔记(一)

    Android安装器学习笔记(一) 一.Android应用的四种安装方式: 1.通过系统应用PackageInstaller.apk进行安装,安装过程中会让用户确认 2.系统程序安装:在开机的时候自动 ...

  4. Android图片处理(Matrix,ColorMatrix) - 转载

    Android图片处理(Matrix,ColorMatrix) 转载自:http://www.cnblogs.com/leon19870907/articles/1978065.html 在编程中有时 ...

  5. scala akka Future 顺序执行 sequential execution

    对于 A => B => C 这种 future 之间的操作,akka 默认会自动的按照顺序执行,但对于数据库操作来说,我们希望几个操作顺序执行,就需要使用语法来声明 有两种声明 futu ...

  6. javascript全屏操作

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. backbone学习笔记:集合(Collection)

    集合(Collection)是一个Backbone对象,用来组织和管理多个模型,它不仅仅是一个javascript数组,还提供了专门的方法来对集合进行排序.过滤和遍历,集合可以方便的与REST服务器进 ...

  8. zabbix添加Tomcat监控

    参靠了网上一些关于zabbix添加Tomcat的监控配置,自己整理了下: 一.服务器端配置1.找到zabbix源码存放路径 # find / -name zabbix_java #/usr/local ...

  9. iOS开发--打印NSRange,CGRect等结构体

    使用对应的转换NSStringFromCGPoint   NSStringFromCGSize   NSStringFromCGRect  NSStringFromCGAffineTransform  ...

  10. React Native(十三)——ios键盘挡住textInput

    渐入佳境 用React Native重构的项目也快接近尾声,剩下的就是适配ios的功能了.慢慢地也从中琢磨出了一点门道,于是就遇见了键盘遮挡textInput问题斑斑: 正常页面: android点击 ...