SVM是一个分类方法,用w^X+b定义分类函数, 于是求w、b,为寻最大间隔,引出1/2||w||^2,继而引入拉格朗日因子,化为对单一因数对偶变量a的求解(求解过程中会涉及到一系列最优化或凸二 次规划等问题),如此,求w.b与求a等价,而求a的解法即为SMO,至于核函数,是为处理非线性情况,若直接映射到高维计算恐维度爆炸,故在低维计算, 等效高维表现。

一、原问题和对偶形式

优化目标:

到这个形式以后,就可以很明显地看出来,它是一个凸优化问题,或者更具体地说,它是一个二次优化问题——目标函数是二次的,约束条件是线性的。这个问题可以用任何现成的 QP (Quadratic Programming) 的优化包进行求解。

虽然这个问题确实是一个标准的 QP 问题,但是它也有它的特殊结构,通过 Lagrange Duality 变换到对偶变量 (dual variable) 的优化问题之后,可以找到一种更加有效的方法来进行求解——这也是 SVM 盛行的一大原因,通常情况下这种方法比直接使用通用的 QP 优化包进行优化要高效得多。此外,在推导过程中,许多有趣的特征也会被揭露出来,包括刚才提到的 supporting vector 的问题。

通过给每一个约束条件加上一个 Lagrange multiplier,我们可以将它们融和到目标函数里去:

然后我们令:

现在的目标函数变成了:

然后,

代回:

此时我们得到关于 dual variable a的优化问题:

  

这里的形式的有趣之处在于,对于新点x的预测,只需要计算它与训练数据点的内积即可(这里<x,z>表示向量内积),这一点至关重要,是之后使用 Kernel 进行非线性推广的基本前提。此外,所谓 Supporting Vector 也在这里显示出来——事实上,所有非 Supporting Vector 所对应的系数a都是等于零的,因此对于新点的内积计算实际上只要针对少量的“支持向量”而不是所有的训练数据即可。

在得到了 dual 对偶形式之后,通过 Kernel 推广到非线性的情况就变成了一件非常容易的事情了。

二、核函数

对于非线性的情况,SVM 的处理方法是选择一个核函数K(x,z),通过将数据映射到高维空间,来解决在原始空间中线性不可分的问题。由于核函数的优良品质,这样的非线性扩展在计算量上并没有比原来复杂多少,这一点是非常难得的。当然,这要归功于核方法——除了 SVM 之外,任何将计算表示为数据点的内积的方法,都可以使用核方法进行非线性扩展。

高斯核:会将原始空间映射为无穷维空间的那个家伙。不过,如果σ选择很大的话,高次特征上的权重实际上衰减得非常快,所以实际上(数值上近似一下)相当于一个低维的子空间;反过来,如果σ选得很小,则可以将任意的数据映射为线性可分——当然,这并不一定是好事,因为随之而来的可能是非常严重的过拟合问题。不过,总的来说,通过调控参数 σ,高斯核实际上具有相当高的灵活性,也是使用最广泛的核函数之一。

SVM计算过程,对偶形式,核函数的更多相关文章

  1. linux主机load average的概念&&计算过程&&注意事项

    最近开发的一个模块需要根据机房各节点的负载情况(如网卡IO.load average等指标)做任务调度,刚开始对Linux机器load average这项指标不是很清楚,经过调研,终于搞清楚了其计算方 ...

  2. 机器翻译评价指标之BLEU详细计算过程

    原文连接 https://blog.csdn.net/guolindonggld/article/details/56966200 1. 简介 BLEU(Bilingual Evaluation Un ...

  3. 闰平年简介及计算过程描述 - Java代码实现

    import java.util.Scanner; /** * @author Shelwin Wei * 分析过程请参照<闰平年简介及计算过程描述>,网址 http://www.cnbl ...

  4. CFD计算过程发散诸多原因分析【转载】

    转载自: http://blog.sina.com.cn/s/blog_5fdfa7e601010rkx.html 今天探讨引起CFD计算过程中发散的一些原因.cfd计算是将描述物理问题的偏微分方程转 ...

  5. 随机森林之oob的计算过程

    随机森林有一个重要的优点就是,没有必要对它进行交叉验证或者用一个独立的测试集来获得误差的一个无偏估计.它可以在内部进行评估,也就是说在生成的过程中就可以对误差建立一个无偏估计. 随机森林在生成每颗决策 ...

  6. 来去学习之---KMP算法--next计算过程

    一.概述 KMP算法是一种字符串匹配算法,比如现有字符串 T:ABCDABCDABCDCABCDABCDE, P:ABCDABCDE P字符串对应的next值:[0,0,0,0,1,2,3,4,0] ...

  7. DFT计算过程详解

    DFT计算过程详解 平时工作中,我们在计算傅里叶变换时,通常会直接调用Matlab中的FFT函数,或者是其他编程语言中已经为我们封装好的函数,很少去探究具体的计算过程,本文以一个具体的例子,向你一步一 ...

  8. CSS学习(7)继承、属性值的计算过程

    子元素会继承父元素的某些css属性 通常跟字体相关的属性都能被继承,具体的可以在mdn里查询是否是可继承属性 属性值的计算过程(渲染过程) 按照页面文档的树形目录结构进行依次渲染 前提条件:渲染的元素 ...

  9. 分类模型的F1-score、Precision和Recall 计算过程

    分类模型的F1分值.Precision和Recall 计算过程 引入 通常,我们在评价classifier的性能时使用的是accuracy 考虑在多类分类的背景下 accuracy = (分类正确的样 ...

随机推荐

  1. 【十大算法实现之KNN】KNN算法实例(含测试数据和源码)

    KNN算法基本的思路是比较好理解的,今天根据它的特点写了一个实例,我会把所有的数据和代码都写在下面供大家参考,不足之处,请指正.谢谢! update:工程代码全部在本页面中,测试数据已丢失,建议去UC ...

  2. Nginx反向代理腾讯云COS的一个坑

    版权声明:本文由黄希彤   原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/668639001484812620 来源:腾云 ...

  3. LeetCode 10 Regular Expression Matching(字符串匹配)

    题目链接 https://leetcode.com/problems/regular-expression-matching/?tab=Description   '.' Matches any si ...

  4. sencha touch 监听视图切换动画(animation)

    var animation = this.getLayout().getAnimation(); //添加监听 animation.on({ scope: this, animationend: 'o ...

  5. POJ 1117 Pairs of Integers

    Pairs of Integers Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 4133 Accepted: 1062 Des ...

  6. 学习项目部署Django+uwsgi+Nginx生产环境部署

    绪论 项目生产环境部署,是很重的一个知识点.第一,Django自带的服务器很简陋,由于测试和开发环境尚可,无法用于生产环境,保障安全性和可靠性.以及性能.此外,学习部署方式,还有利于了解生产部署后的项 ...

  7. MAC ox下配置mysql

    下载MySQL安装包:http://dev.mysql.com/downloads/mysql/ 如图,选择dmg包,下载完成,双击后打开对应的pkg包,一直点击下一步,直到安装成功 启动和停止MyS ...

  8. 如何分离p12(或pfx)文件中的证书和私钥

    p12(或者pfx)文件里一般存放有CA的根证书,用户证书和用户的私钥 假设我们有一个test.p12文件 在安装了openssl的linux服务器上执行以下命令: 提取用户证书: openssl p ...

  9. [工具] CuteMarkEd

    CuteMarkEd 是一款开源免费的.支持代码高亮的.朴素的 Markdown 本地编辑器,支持 Windows.Linux. 就因为程序员喜欢用,然后就拼命的开发 Markdown 编辑器么?青小 ...

  10. Thinkphp框架下设置session的过期时间

    打开项目中的配置文件,添加session的过期配置,如下: 'SESSION_OPTIONS' => array( 'name' => 'BJYSESSION', //设置session名 ...