【CF896D】Nephren Runs a Cinema 卡特兰数+组合数+CRT
【CF896D】Nephren Runs a Cinema
题意:一个序列中有n格数,每个数可能是0,1,-1,如果一个序列的所有前缀和都>=0且总和$\in [L,R]$,那么我们称这个序列是合法的。求合法序列的个数%P。
n,L,R<=100000,P<=2*10^9
题解:先不考虑0的数,那么总数显然就是卡特兰数的变形。我们将卡特兰数转换成在二维平面上,从(0,0)走到(a,b),且不越过直线x=y的方案数。因为每个越过x=y的方案都可以转化成从(-1,1)走到(a,b)的方案,所以总方案数就是$C_{a+b}^b-C_{a+b}^{b-1}$。如果序列的总和为j,那么令a=(n+j)/2,b=(n-j)/2即可。如果我们要对$j\in [L,R]$的所有方案数求和,那么答案就变成$C_n^{\lfloor{n-L\over 2}\rfloor}-C_n^{\lceil{n-R\over r}\rceil}$。
那如果我们考虑0呢?如果i个人是0,那么总方案数*$C_n^i$即可。
但是问题来了,模数不是质数怎么办?还记得礼物那题吗?我们先将模数拆成$\prod p_i^{c_i}$的形式,然后对于$p_i^{c_i}$分开计算。我们希望把阶乘表示成$a*p^b$的形式,这样就可以支持除法了(a可以求逆元搞定,b可以直接相减),具体如何实现?我们将n!中p的倍数都拿出来,比如p=5,那么n!可以表示成
$n!=(1\times2\times3\times4\times6\times7\times8\times9\times11...)\times5^{\lfloor{n\over 5}\rfloor}\times(\lfloor{n\over 5}\rfloor)!$
对于前面那些东西我们可以预处理,后面那个阶乘我们递归算下去即可(也可以递推求出)。
最后用中国剩余定理合并即可。
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=100010;
ll n,L,R,cnt;
ll Pri,P,PP,phi,ans;
ll cp[10],cpp[10];
inline ll pm(ll x,ll y,ll z)
{
ll ret=1;
while(y)
{
if(y&1) ret=ret*x%z;
x=x*x%z,y>>=1;
}
return ret;
}
struct node
{
ll x,y;
node() {x=y=0;}
node(ll a,ll b) {x=a,y=b;}
node operator + (const node &a) {return node(x+a.x,y*a.y%PP);}
node operator * (const int a) {return node(x*a,pm(y,a,PP));}
}jc[maxn],f[maxn];
inline ll c(ll a,ll b)
{
if(b<0) return 0;
node x=f[a],y=f[a-b]+f[b];
return pm(P,x.x-y.x,PP)*x.y%PP*pm(y.y,PP/P*(P-1)-1,PP)%PP;
}
inline ll solve()
{
ll ret=0,i;
memset(jc,0,sizeof(jc)),memset(f,0,sizeof(f));
jc[0]=node(0,1);
for(i=1;i<=min(n,PP-1);i++)
{
jc[i]=jc[i-1];
if(i%P) jc[i].y=jc[i].y*i%PP;
}
for(i=0;i<=min(n,P-1);i++) f[i]=jc[i];
for(;i<=n;i++) f[i]=(n>=PP?(jc[PP-1]*(i/PP)):node(0,1))+jc[i%PP]+node(i/P,1)+f[i/P];
for(i=L;i<=n;i++) ret=(ret+c(n,i)*(c(i,i-(i+L+1)/2)-c(i,i-(i+R)/2-1)+PP))%PP;
return ret;
}
int main()
{
scanf("%I64d%I64d%I64d%I64d",&n,&Pri,&L,&R);
int i;
ll tmp=Pri;
phi=1;
for(i=2;i*i<=tmp;i++)
{
if(tmp%i==0)
{
tmp/=i,phi*=i-1;
cp[++cnt]=i,cpp[cnt]=i;
while(tmp%i==0) tmp/=i,phi*=i,cpp[cnt]*=i;
}
}
if(tmp!=1) phi*=(tmp-1),cp[++cnt]=tmp,cpp[cnt]=tmp;
for(i=1;i<=cnt;i++)
{
P=cp[i],PP=cpp[i];
ans=(ans+(Pri/PP)*pm(Pri/PP,phi-1,Pri)%Pri*solve())%Pri;
}
printf("%I64d",ans);
return 0;
}
【CF896D】Nephren Runs a Cinema 卡特兰数+组合数+CRT的更多相关文章
- CF896D Nephren Runs a Cinema
CF896D Nephren Runs a Cinema 题意 售票员最开始没有纸币,每次来一个顾客可以给她一张.拿走她一张或不操作.求出不出现中途没钱给的情况 \(n\) 名顾客后剩余钱数在 \(l ...
- CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)
Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema. Howev ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
- 牛客网 牛客小白月赛1 I.あなたの蛙が帰っています-卡特兰数,组合数阶乘逆元快速幂
I.あなたの蛙が帰っています 链接:https://www.nowcoder.com/acm/contest/85/I来源:牛客网 这个题有点意思,是卡特兰数,自行百度就可以.卡特兰数用处 ...
- 51nod 1120 机器人走方格 V3 【卡特兰数+卢卡斯定理+组合数】
-我并不知道为什么事卡特兰数,反正用dp打的表就是卡特兰数,因为是两个三角所以再乘个2 卡特兰数使用\( h(n)=\frac{C_{2n}^{n}}{n+1} \)因为范围比较大所以组合数部分用卢卡 ...
- 【模拟7.27】题(liu_runda的神题)(卡特兰数,组合数)
考场的SB经验不再分享 case 0: 一道组合计数的水题,具体不再讲可以看以前的相似题 case 1: 很明显的卡特兰计数,我们把长度为n的序列看成01串 关于卡特兰计数的详细的讲解 由此可知我们需 ...
- [bzoj1485][HNOI2009]有趣的数列_卡特兰数_组合数
有趣的数列 bzoj-1485 HNOI-2009 题目大意:求所有1~2n的排列满足奇数项递增,偶数项递增.相邻奇数项大于偶数项的序列个数%P. 注释:$1\le n\le 10^6$,$1\le ...
- HDU 5673 Robot ——(卡特兰数)
先推荐一个关于卡特兰数的博客:http://blog.csdn.net/hackbuteer1/article/details/7450250. 卡特兰数一个应用就是,卡特兰数的第n项表示,现在进栈和 ...
- HDU-4828 卡特兰数+带模除法
题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...
随机推荐
- iOS模拟(糟糕的)网络环境
有时候为了模拟在糟糕的网络环境下app的表现,会故意拔网线(断wifi),苹果其实提供了专门的工具来精确地模拟你在几个预设的场景下的网络连接情况:Network Link Conditioner 点击 ...
- Webkit内核探究【2】——Webkit CSS实现
注:[转载请注明文章来源.保持原样] 出处:http://www.cnblogs.com/jyli/archive/2010/01/31/1660364.html 作者:李嘉昱 CSS在Webkit中 ...
- git 强制刷新,放弃更改
git fetch --all git reset --hard origin/master
- ABBYY FineReader利用模式提高OCR质量
提高OCR质量,除了可以使用ABBYY FineReader 12OCR文字识别软件解决纸质文档的复杂结构未出现在电子文档中,或者未正确检测到区域的问题(详见如何提高ABBYY FineReader ...
- 开发者如何更好的选择和适应NoSQL的5个阶段
基本含义 NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨.NoSQL的拥护者们提倡运用非关 ...
- nginx配置设置,使部分页面访问跳转到404页面
location ~* /(ask|hospital|wenda|regsearch|user|doctor) { return ; } error_page /.html;
- Ubuntu 12.04下安装QQ 2012 Beta3(转)
Ubuntu 12.04下安装QQ 2012 Beta3 由于wine的发展非常迅速.现在网上的利用老版本的wine来安装QQ2012的教程已经有些过时了.实际上操作起来非常简单: 第一步:Ctr ...
- hbase shell 启动报错
启动hbase之后,发现hbase shell启动报错: version 2.0.0-alpha4, r5c4b985f89c99cc8b0f8515a4097c811a0848835, Tue Oc ...
- RF-字符串转为整数的方法
- Selenium 查找节点
Selenium 可以驱动浏览器完成各种操作,比如填充表单.模拟点击等.比如,我们想要完成向某个输入框输入文字的操作,总需要知道这个输入框在哪里吧?而 Selenium 提供了一系列查找节点的方法,我 ...