./bin/spark-submit ~/src_test/prefix_span_test.py

source code:

import os
import sys
from pyspark.mllib.fpm import PrefixSpan
from pyspark import SparkContext
from pyspark import SparkConf sc = SparkContext("local","testing")
print(sc)
data = [
[['a'],["a", "b", "c"], ["a","c"],["d"],["c", "f"]],
[["a","d"], ["c"],["b", "c"], ["a", "e"]],
[["e", "f"], ["a", "b"], ["d","f"],["c"],["b"]],
[["e"], ["g"],["a", "f"],["c"],["b"],["c"]]
]
rdd = sc.parallelize(data, 2)
model = PrefixSpan.train(rdd, 0.5,4)
result = sorted(model.freqSequences().collect())
print("*"*88)
print(result)
print("*"*88)

output:

****************************************************************************************
[FreqSequence(sequence=[['a']], freq=4), FreqSequence(sequence=[['a'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['b']], freq=4), FreqSequence(sequence=[['a'], ['b'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['a'], ['b', 'c']], freq=2), FreqSequence(sequence=[['a'], ['b', 'c'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['c']], freq=4), FreqSequence(sequence=[['a'], ['c'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['c'], ['b']], freq=3), FreqSequence(sequence=[['a'], ['c'], ['c']], freq=3), FreqSequence(sequence=[['a'], ['d']], freq=2), FreqSequence(sequence=[['a'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['a'], ['f']], freq=2), FreqSequence(sequence=[['b']], freq=4), FreqSequence(sequence=[['b'], ['a']], freq=2), FreqSequence(sequence=[['b'], ['c']], freq=3), FreqSequence(sequence=[['b'], ['d']], freq=2), FreqSequence(sequence=[['b'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['b'], ['f']], freq=2), FreqSequence(sequence=[['b', 'a']], freq=2), FreqSequence(sequence=[['b', 'a'], ['c']], freq=2), FreqSequence(sequence=[['b', 'a'], ['d']], freq=2), FreqSequence(sequence=[['b', 'a'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['b', 'a'], ['f']], freq=2), FreqSequence(sequence=[['b', 'c']], freq=2), FreqSequence(sequence=[['b', 'c'], ['a']], freq=2), FreqSequence(sequence=[['c']], freq=4), FreqSequence(sequence=[['c'], ['a']], freq=2), FreqSequence(sequence=[['c'], ['b']], freq=3), FreqSequence(sequence=[['c'], ['c']], freq=3), FreqSequence(sequence=[['d']], freq=3), FreqSequence(sequence=[['d'], ['b']], freq=2), FreqSequence(sequence=[['d'], ['c']], freq=3), FreqSequence(sequence=[['d'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e']], freq=3), FreqSequence(sequence=[['e'], ['a']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['f']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['f']], freq=3), FreqSequence(sequence=[['f'], ['b']], freq=2), FreqSequence(sequence=[['f'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['f'], ['c']], freq=2), FreqSequence(sequence=[['f'], ['c'], ['b']], freq=2)]
****************************************************************************************

spark mllib prefixspan demo的更多相关文章

  1. 在Java Web中使用Spark MLlib训练的模型

    PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨 ...

  2. 十二、spark MLlib的scala示例

    简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习 ...

  3. Spark MLlib + maven + scala 试水~

    使用SGD算法逻辑回归的垃圾邮件分类器 package com.oreilly.learningsparkexamples.scala import org.apache.spark.{SparkCo ...

  4. Spark MLlib之线性回归源代码分析

    1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...

  5. spark mllib docs,MLlib: RDD-based API

    MLlib: RDD-based API This page documents sections of the MLlib guide for the RDD-based API (the spar ...

  6. spark mllib lda 中文分词、主题聚合基本样例

    github https://github.com/cclient/spark-lda-example spark mllib lda example 官方示例较为精简 在官方lda示例的基础上,给合 ...

  7. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

  8. Spark MLlib - LFW

    val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first pri ...

  9. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

随机推荐

  1. Caravel–一款开源OLAP+数据可视化分析前端工具,支持Druid和Kylin

    参考此文:http://lxw1234.com/archives/2016/06/681.htm

  2. vue:vuex中mapState、mapGetters、mapActions辅助函数及Module的使用

    一.普通store中使用mapState.mapGetters辅助函数: 在src目录下建立store文件夹: ​ index.js如下: import Vue from 'vue'; import ...

  3. connect设置连接超时

    转自:庖丁解牛 /** * connect_timeout - 带超时的connect(方法中已执行connect) * @fd:文件描述符 * @addr:地址结构体指针 * @wait_secon ...

  4. iOS日历控件

    项目需要,前一阵子重构了下iPad工程,添加了一个滚动无缝日历. 当时没有头绪,网上找了一个源码改吧改吧就上线了(参考链接),这个功能很多而且流畅性也特别好,推荐不会写的可以参考下. 这几天,活不太忙 ...

  5. tee命令使用

    需求描述: 今天在看nginx内容的过程,遇到了tee这个命令,所以查询了下,在这里记录下使用方法. 操作过程: 1.执行以下的命令 [root@testvm ~]# uname -n | tee h ...

  6. pycharm使用selenium之前

    2.python安装好后,查看你的pycharm输出控制台,第一行就写了你所使用的python.exe的路径,如下图箭头处所示: 检查python使用的是不是你刚刚安装的,如果不是,换成你刚刚安装的p ...

  7. 在Heroku上免费部署ASP.NET Core(使用Docker和CircleCI)

    创建 ASP.NET Core应用 使用命令行即可创建一个模板项目 dotnet new webapi 完整代码 https://github.com/Ibro/AspNetCoreHerokuDoc ...

  8. Fiddler抓取HTTPS请求配置

    由于fiddler安装后默认只能抓取http请求,如果需要抓取https请求需要进行配置.配置方式:Tools--->Options--->HTTPS,勾选CaptureHTTPS CON ...

  9. web前端面试题 -- 2019最新,最全

    最近在找工作,面试了好多家公司,结果都不怎么理想.要么公司环境氛围不行,要么工资达不到理想的薪资.大部分公司对程序员的面试流程几乎都一样,来了先填一份登记表,写一套面试题,然后技术面,人事面.至于有的 ...

  10. Maven下载与环境变量配置

    前言: Maven 是一个基于 Java 的工具,所以要做的第一件事情就是安装 JDK.如果还未安装 JDK,可以参考Win10下JDK下载与环境变量配置. 项目 要求 JDK Maven 3.3+ ...