./bin/spark-submit ~/src_test/prefix_span_test.py

source code:

import os
import sys
from pyspark.mllib.fpm import PrefixSpan
from pyspark import SparkContext
from pyspark import SparkConf sc = SparkContext("local","testing")
print(sc)
data = [
[['a'],["a", "b", "c"], ["a","c"],["d"],["c", "f"]],
[["a","d"], ["c"],["b", "c"], ["a", "e"]],
[["e", "f"], ["a", "b"], ["d","f"],["c"],["b"]],
[["e"], ["g"],["a", "f"],["c"],["b"],["c"]]
]
rdd = sc.parallelize(data, 2)
model = PrefixSpan.train(rdd, 0.5,4)
result = sorted(model.freqSequences().collect())
print("*"*88)
print(result)
print("*"*88)

output:

****************************************************************************************
[FreqSequence(sequence=[['a']], freq=4), FreqSequence(sequence=[['a'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['b']], freq=4), FreqSequence(sequence=[['a'], ['b'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['a'], ['b', 'c']], freq=2), FreqSequence(sequence=[['a'], ['b', 'c'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['c']], freq=4), FreqSequence(sequence=[['a'], ['c'], ['a']], freq=2), FreqSequence(sequence=[['a'], ['c'], ['b']], freq=3), FreqSequence(sequence=[['a'], ['c'], ['c']], freq=3), FreqSequence(sequence=[['a'], ['d']], freq=2), FreqSequence(sequence=[['a'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['a'], ['f']], freq=2), FreqSequence(sequence=[['b']], freq=4), FreqSequence(sequence=[['b'], ['a']], freq=2), FreqSequence(sequence=[['b'], ['c']], freq=3), FreqSequence(sequence=[['b'], ['d']], freq=2), FreqSequence(sequence=[['b'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['b'], ['f']], freq=2), FreqSequence(sequence=[['b', 'a']], freq=2), FreqSequence(sequence=[['b', 'a'], ['c']], freq=2), FreqSequence(sequence=[['b', 'a'], ['d']], freq=2), FreqSequence(sequence=[['b', 'a'], ['d'], ['c']], freq=2), FreqSequence(sequence=[['b', 'a'], ['f']], freq=2), FreqSequence(sequence=[['b', 'c']], freq=2), FreqSequence(sequence=[['b', 'c'], ['a']], freq=2), FreqSequence(sequence=[['c']], freq=4), FreqSequence(sequence=[['c'], ['a']], freq=2), FreqSequence(sequence=[['c'], ['b']], freq=3), FreqSequence(sequence=[['c'], ['c']], freq=3), FreqSequence(sequence=[['d']], freq=3), FreqSequence(sequence=[['d'], ['b']], freq=2), FreqSequence(sequence=[['d'], ['c']], freq=3), FreqSequence(sequence=[['d'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e']], freq=3), FreqSequence(sequence=[['e'], ['a']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['a'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['f']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['b']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['c']], freq=2), FreqSequence(sequence=[['e'], ['f'], ['c'], ['b']], freq=2), FreqSequence(sequence=[['f']], freq=3), FreqSequence(sequence=[['f'], ['b']], freq=2), FreqSequence(sequence=[['f'], ['b'], ['c']], freq=2), FreqSequence(sequence=[['f'], ['c']], freq=2), FreqSequence(sequence=[['f'], ['c'], ['b']], freq=2)]
****************************************************************************************

spark mllib prefixspan demo的更多相关文章

  1. 在Java Web中使用Spark MLlib训练的模型

    PMML是一种通用的配置文件,只要遵循标准的配置文件,就可以在Spark中训练机器学习模型,然后再web接口端去使用.目前应用最广的就是基于Jpmml来加载模型在javaweb中应用,这样就可以实现跨 ...

  2. 十二、spark MLlib的scala示例

    简介 spark MLlib官网:http://spark.apache.org/docs/latest/ml-guide.html mllib是spark core之上的算法库,包含了丰富的机器学习 ...

  3. Spark MLlib + maven + scala 试水~

    使用SGD算法逻辑回归的垃圾邮件分类器 package com.oreilly.learningsparkexamples.scala import org.apache.spark.{SparkCo ...

  4. Spark MLlib之线性回归源代码分析

    1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...

  5. spark mllib docs,MLlib: RDD-based API

    MLlib: RDD-based API This page documents sections of the MLlib guide for the RDD-based API (the spar ...

  6. spark mllib lda 中文分词、主题聚合基本样例

    github https://github.com/cclient/spark-lda-example spark mllib lda example 官方示例较为精简 在官方lda示例的基础上,给合 ...

  7. Spark MLlib中KMeans聚类算法的解析和应用

    聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...

  8. Spark MLlib - LFW

    val path = "/usr/data/lfw-a/*" val rdd = sc.wholeTextFiles(path) val first = rdd.first pri ...

  9. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

随机推荐

  1. 原生JS实现表单序列化serialize()

    有一个form表单,要用AJAX后台提交,原来想拼接json,但是数据多了麻烦,不灵活. 用HTML5的FormData来初始化表单 var formdata=new FormData(documen ...

  2. vuex store刷新存储状态

    app.vue 平时不想把信息存到session里,只有无可奈何的时候才准备村 <script> export default { name: 'App', created() { //刷 ...

  3. Docker 运维高级应用管理

     Docker 基本应用 1.Docker 介绍及安装 2.Docket 使用命令 3.Docker run命令参数整理 4.Docker 构建镜像 Docker Compose 高级应用 1.Doc ...

  4. SQL Server2017还原数据库时指定mdf文件及日志文件的名称

    由于需要还原同一个数据库的不同备份到不同数据库中,可是在还原的时候,可是在指定目标数据库时,填写不同的数据库名称,在SQL Server Data文件夹中生成的.mdf文件还是同一个,如图,虽然是很简 ...

  5. pip安装报错

    ERROR: Microsoft Visual C++ 9.0 is required (Unable to find vcvarsall.bat) python通过pip或者源码来安装某些模块时,这 ...

  6. 剑指offer 07:斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).(n<=39) 法一: public class Solution { publi ...

  7. 使用MySQL workbench 和Excel表之间的数据互相导出

    导出数据是很常用的功能,但今天在操作时遇到了一点问题,记录下来,方便其他人查阅. 1. 使用MySQL workbench 导出数据 在workbench里连接好数据库之后直接点击左侧的managem ...

  8. CentOS yum换源

    1.备份系统自带yum源 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.进入yum源配 ...

  9. DataFrame 重新设置索引: reindex 和 reset_index 的区别

    将两个 DataFrame 拼接后,想要对拼接后的 DataFrame 重新设置索引要用 reset_index 方法,要想让之前的索引消失,传入参数:drop=True.具体事例: data2017 ...

  10. springboot与Mybatis结合

    一:使用generator,关联上数据库生成相关文件, 如 mapping/UserMapper.xml,mapper/UserMapper.java,model/User.java; generat ...