复旦高等代数 I(18级)每周一题
[问题2018A01] 计算下列 $n+1$ 阶行列式的值: $$|A|=\begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & a_1 & a_2 & \cdots & a_n \\ -2 & a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \vdots & & \vdots \\ (-1)^{n-1}n & a_1^n & a_2^n & \cdots & a_n^n \\ \end{vmatrix}.$$
[问题2018A02] 设 $\lambda_1,\lambda_2,\cdots,\lambda_n$ 为 $n$ 个复数, 满足: $$\left\{\begin{array}{l}\lambda_1+\lambda_2+\cdots+\lambda_n=r,\\ \lambda_1^2+\lambda_2^2+\cdots+\lambda_n^2=r,\\ \cdots\cdots\cdots\cdots \\ \lambda_1^n+\lambda_2^n+\cdots+\lambda_n^n=r,\\ \lambda_1^{n+1}+\lambda_2^{n+1}+\cdots+\lambda_n^{n+1}=r,\\ \end{array}\right.$$ 其中 $r\in [0,n]$ 为整数. 证明: $\lambda_1,\lambda_2,\cdots,\lambda_n$ 中有 $r$ 个 $1$, $n-r$ 个 $0$.
提示 用 VanderMonde 行列式和 Cramer 法则来做.
[问题2018A03] 设 $A=(a_{ij})$ 为 $n$ 阶方阵, $b$ 为常数, 方阵 $B=(a_{ij}+b)$, 即 $B$ 的每个元素都是 $A$ 中对应元素加上 $b$.
(1) 证明: $A$ 的所有代数余子式之和等于 $B$ 的所有代数余子式之和;
(2) 进一步假设 $A$ 是偶数阶反对称阵, 证明: $|A|=|B|$.
[问题2018A04] 计算下列 $n$ 阶行列式的值: $$|A|=\begin{vmatrix} x & 1 & 0 & 0 & \cdots & 0 & 0 \\ n-1 & x & 2 & 0 & \cdots & 0 & 0 \\ 0 & n-2 & x & 3 & \cdots & 0 & 0 \\ 0 & 0 & n-3 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & x \\ \end{vmatrix}.$$
[问题2018A05] 设 $\alpha,\beta$ 为 $n$ 维列向量且 $\alpha\neq 0$, 试构造 $n$ 阶方阵 $A$, 满足以下两个条件:
(1) $A\alpha=\beta$;
(2) 对任一满足 $\alpha'\gamma=0$ 的 $n$ 维列向量 $\gamma$, 均有 $A\gamma=\gamma$.
[问题2018A06] 试求下列矩阵 $A=(a_{ij})$ 的秩, 其中:
(1) $a_{ij}=\cos(\alpha_i-\beta_j)$ (参考复旦高代教材第二章复习题46);
(2) $a_{ij}=1+x_iy_j$ (参考复旦高代教材第二章复习题45).
[问题2018A07] 设 $V_1,\cdots,V_m,W$ 都是线性空间 $V$ 的子空间, 满足 $W\subseteq V_1\bigcup V_2\bigcup\cdots\bigcup V_m$. 证明: 存在某个 $1\leq i\leq m$, 使得 $W\subseteq V_i$.
[问题2018A08] 设 $A,B$ 分别为 $m\times n$ 和 $n\times m$ 矩阵, $C$ 为 $n$ 阶非异阵, 满足 $A(C+BA)=0$. 证明: 线性方程组 $Ax=0$ 的通解为 $(C+BA)\alpha$, 其中 $\alpha$ 为任意的 $n$ 维列向量.
[问题2018A09] 设 $S$ 是线性空间 $V$ 中的向量族, 并且至少包含一个非零向量. 证明: $S$ 存在极大无关组的充要条件是 $S$ 张成的子空间 $L(S)$ 是一个有限维线性空间.
注 本题推广了复旦高代教材的命题 3.5.1.
[问题2018A10] 设 $V,U$ 分别是数域 $K$ 上的 $n,m$ 维线性空间, $\varphi,\psi:V\to U$ 是两个线性映射, 证明: $\mathrm{Im\,}\varphi\subseteq\mathrm{Im\,}\psi$ 的充要条件是存在 $V$ 上的线性变换 $\xi$, 使得 $\varphi=\psi\xi$.
[问题2018A11] (1) 请利用相抵标准型理论证明: 若 $A$ 为 $n$ 阶幂等阵, 即 $A^2=A$, 则 $\mathrm{tr}(A)=r(A)$. 利用相似标准型理论证明这一结论, 可参考白皮书的例 4.49(2).
(2) 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 满足 $\varphi^m=I_V\,(m\geq 2)$, $W=\mathrm{Ker}(I_V-\varphi)$. 证明: 线性变换 $\dfrac{1}{m}\sum\limits_{i=0}^{m-1}\varphi^i$ 的迹等于 $\dim W$.
[问题2018A12] 设循环矩阵 $A=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \\ \end{pmatrix}$, 证明: 伴随阵 $A^*$ 也是循环矩阵.
提示 把 $A$ 相似于对角阵, 然后用 Lagrange 插值公式来做.
[问题2018A13] 设复系数多项式 $f(x),g(x)$ 互素, 证明: $f(x)^2+g(x)^2$ 的重根必为 $f'(x)^2+g'(x)^2$ 的根.
[问题2018A14] 设 $p$ 为奇素数, 证明: 多项式 $f(x)=(p-1)x^{p-2}+(p-2)x^{p-3}+\cdots+2x+1$ 在有理数域上不可约.
复旦高等代数 I(18级)每周一题的更多相关文章
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数I(19级)每周一题
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博 ...
- 复旦高等代数 I(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第二教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1-2道思考题,供大家思考和解答.每周一题通过“谢启鸿高 ...
- 复旦高等代数 I(16级)每周一题
每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...
- 复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...
- 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...
- Good Vegetable 4级算法题 分值: [320/3120] 问题: [8/78]
1523 非回文 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个字符串是非回文的,当且仅当,他只由前p个小写字母 ...
- 51nod图论题解(4级,5级算法题)
51nod图论题解(4级,5级算法题) 1805 小树 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 她发现她的树的点上都有一个标号(从1到n),这些树都在空 ...
随机推荐
- git rebase和git merge的用法
http://softlab.sdut.edu.cn/blog/subaochen/2016/01/git-rebase%E5%92%8Cgit-merge%E7%9A%84%E7%94%A8%E6% ...
- Redis多机多节点集群实验
第一步:环境准备 我们搞两台虚拟机 局域网IP 分别是 192.168.1.109和192.168.1.110 我们约定把192.168.1.109作为集群控制端,需要安装redis-trib.rb ...
- 2016(5)系统设计,web应用
试题五(共25分) 阅读以下关于Web应用的叙述,在答题纸上回答问题1至问题3. 某软件企业拟开发一套基于Web的云平台配置管理与监控系统,该系统按租户视图.系统管理视图以及业务视图划分为多个相应的W ...
- (转)Centos下,Docker部署Yapi接口管理平台
接口测试的工具很多,公司引进了接口管理平台Yapi,自己尝试直接搭建,从安装Nodejs到配置MongoDB数据库,再到安装yapi的时候,遇到浏览器打开本地服务器Ip地址后,没有显示部署内容...没 ...
- .NET CORE 使用Dapper连接MSSQL,MYSQL
Project file: <Project Sdk="Microsoft.NET.Sdk"> <PropertyGroup> <Outp ...
- 2019微信浏览器跳转外部浏览器下载app打开任意站实现方法
很多朋友问我怎么解决微信内点击链接或扫描二维码可以直接跳出微信在外部浏览器打开网页链接和下载APP,其实这并不难,只要我们实现微信跳转功能即可.下面给大家介绍这个功能 方案实现教程: 功能目的 生成微 ...
- C++ 用三元组表示法存储稀疏矩阵
若有一个矩阵(m*n),其中非0元素个数远少于数值为0的元素个数,若开辟一个m*n大空间,来存储这样一个很多元素值为0的矩阵,浪费空间,于是我们只存储这些非0的元素的下标及数值 用一个结构体——三元组 ...
- 解决Qt下ssl出错的办法
在使用 QNetworkAccessManager 时出现的ssl错误:qt.network.ssl: QSslSocket: cannot resolve SSL_set_psk_client_ca ...
- 【数据结构】算法 LinkList (Remove Nth Node From End of List)
删除链表中倒数第n个节点 时间复杂度要控制在O(n)Solution:设置2个指针,一个用于确定删除节点的位置,一个用于计算倒数间距n.移动时保持2个指针同时移动. public ListNode r ...
- webstorm编辑器使用
1.自动生成vue文件模板,如图