James Munkres Topology: Sec 18 Exer 12
Theorem 18.4 in James Munkres “Topology” states that if a function \(f : A \rightarrow X \times Y\) is continuous, its coordinate functions \(f_1 : A \rightarrow X\) and \(f_2 : A \rightarrow Y\) are also continuous, and the converse is also true. This is what we have been familiar with, such as a continuous parametric curve \(f: [0, 1] \rightarrow \mathbb{R}^3\) defined as \(f(t) = (x(t), y(t), z(t))^T\) with its three components being continuous. However, if a function \(g: A \times B \rightarrow X\) is separately continuous in each of its components, i.e. both \(g_1: A \rightarrow X\) and \(g_2 : B \rightarrow X\) are continuous, \(g\) is not necessarily continuous.
Here, the said “separately continuous in each of its components” means arbitrarily selecting the value of one component variable from its domain and fix it, then the original function depending only on the other component is continuous. In the above, the function \(g\) can be envisaged as a curved surface in 3D space. With \(g_1\) being continuous, the intersection profiles between this curved surface and those planes perpendicular to the coordinate axis for \(B\) are continuous. Similarly, because \(g_2\) is continuous, the intersection profiles obtained from those planes perpendicular to the coordinate axis for \(A\) are also continuous. The continuity of intersection curves is only ensured in these two special directions, so it is not guaranteed that the original function \(g\) is continuous.
In Exercise 12 of Section 18, an example is given as
\[
F(x \times y) = \begin{cases}
\frac{xy}{x^2 + y^2} & (x \neq 0, y \neq 0) \\
0 & (x = 0, y = 0)
\end{cases},
\]
where \(F\) is continuous separately in each of its component variables but is not continuous by itself. This is function is visualized below.

Fix \(y\) at \(y_0\), we have \(F_{y_0}(x) = F(x \times y_0)\). When \(y_0 \neq 0\), \(F_{y_0}(x)\) is continuous with respect to \(x\) because it is only a composition of continuous real valued functions via simple arithmetic. When \(y_0 = 0\), if \(x \neq 0\), \(F_0(x) = 0\); if \(x =0\), \(F_0(x)\) is also 0 due to the definition of \(F(x \times y)\). Therefore, \(F_0(x)\) is a constant function, which is continuous due to Theorem 18.2 (a). Similarly, \(F_{x_0}(y)\) is also continuous with respect to \(y\).
However, if we let \(x = y\) and approach \((x, y) = (x, x)\) to \((0, 0)\), it can be seen that \(F(x \times x)\) is not continuous, because
- when \(x \neq 0\), \(F(x \times x) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}\);
- when \(x = 0\), \(F(x \times x) = 0\).
If we let \(x = -y\) and approach \((x ,y) = (x, -x)\) to \((0, 0)\), \(F = -\frac{1}{2}\) when \(x \neq 0\) and \(F = 0\) when \(x = 0\).
Then, if we select an open set such as \((-\frac{1}{4}, \frac{1}{4})\) around the function value \(0\) in \(\mathbb{R}\), its pre-image \(U\) in \(\mathbb{R} \times \mathbb{R}\) should include the point \((0, 0)\) and exclude the rays \((x, x)\) and \((x, -x)\) with \(x \in \mathbb{R}\) and \(x \neq 0\). Due to these excluded rays, there is no neighborhood of \((0, 0)\) in \(\mathbb{R} \times \mathbb{R}\) that is contained completely in \(U\). Therefore, \(U\) is not an open set and \(F(x \times y)\) is not continuous.
From the above analysis, some lessons can be learned.
- Pure analysis can be made and general conclusions can be obtained before entering into the real world with a solid example.
- A tangible counter example is a sound proof for negation of a proposition. Just one is enough!
James Munkres Topology: Sec 18 Exer 12的更多相关文章
- James Munkres Topology: Sec 22 Exer 3
Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on th ...
- James Munkres Topology: Sec 22 Exer 6
Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) ...
- James Munkres Topology: Sec 37 Exer 1
Exercise 1. Let \(X\) be a space. Let \(\mathcal{D}\) be a collection of subsets of \(X\) that is ma ...
- James Munkres Topology: Sec 22 Example 1
Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subsp ...
- James Munkres Topology: Theorem 19.6
Theorem 19.6 Let \(f: A \rightarrow \prod_{\alpha \in J} X_{\alpha}\) be given by the equation \[ f( ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- James Munkres Topology: Theorem 20.4
Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser ...
- James Munkres Topology: Theorem 16.3
Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topo ...
随机推荐
- EventBus 线程切换原理
主要问题其实只有两个,其一:如何判断当前发送事件的线程是否是主线程:其二:如何在接收事件时指定线程并执行: 一个一个来看. 1.如何判断是否在主线程发送 EventBus在初始化的时候会初始化一个Ma ...
- jQuery之事件和批量操作、事件委托示例
一.常用事件 click(function(){...}) // 点击时触发 focus(function(){...}) // 获得焦点触发 blur(function(){...}) // 失去焦 ...
- Spring MVC 使用介绍(八)—— 类型转换
一.概述 spring类型转换有两种方式: PropertyEditor:可实现String<--->Object 之间相互转换 Converter:可实现任意类型的相互转换 类型转换的过 ...
- json内存级非关系数据库
介绍 `jsonDB2`是一个基于内存的键值对数据库(非关系型数据库) 开发初衷:实现个人tornado项目中内存session存储功能(不想引入redis等非关系型数据库) 项目地址: https: ...
- 第六十三天 js基础
一.JS三个组成部分 ES:ECMAScript语法 DOM:document对象模型=>通过js代码与页面文档(出现在body中的所有可视化标签)进行交互 BOM:borwser对象模型=&g ...
- CentOS7使用firewalld防火墙配置端口
安装启用firewalld防火墙 CentOS7默认的防火墙是firewalld 如果没有firewalld防火墙,可以执行yum install firewalld 命令进行安装 firewalld ...
- 洛谷P4719 动态dp
动态DP其实挺简单一个东西. 把DP值的定义改成去掉重儿子之后的DP值. 重链上的答案就用线段树/lct维护,维护子段/矩阵都可以.其实本质上差不多... 修改的时候在log个线段树上修改.轻儿子所在 ...
- Redux Todos Example
此项目模板是使用Create React App构建的,它提供了一种简单的方法来启动React项目而无需构建配置. 使用Create-React-App构建的项目包括对ES6语法的支持,以及几种非官方 ...
- 2017-12-19python全栈9期第四天第二节之列表的增删查改之正向排序和倒向排序和反转
#!/user/bin/python# -*- coding:utf-8 -*-li = [3,5,6546,6,8,324,2,1,34,5,6,7]# li.sort() #正向# print(l ...
- busybox(二)编译
title: busybox(二)编译 tag: arm date: 2018-11-13 23:14:58 --- busybox(二)编译 解压,源码包在busybox-1.7.0.tar.bz2 ...