题目链接 \(Click\) \(Here\)

考虑模型转换。变成文理分科二选一带收益模型,就一波带走了。

如果没有见过这个模型的话,这里讲的很详细。

#include <bits/stdc++.h>
using namespace std; #define LL long long
const int N = 400010;
const int M = 800010;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3f; int n, m, cnt = -1, head[N]; struct edge {
int nxt, to; LL f;
}e[M]; void add_len (int u, int v, LL f) {
e[++cnt] = (edge) {head[u], v, f}; head[u] = cnt;
e[++cnt] = (edge) {head[v], u, 0}; head[v] = cnt;
} int node (int x) {return x;}
int f1 (int x) {return n + m * 0 + x;}
int f2 (int x) {return n + m * 1 + x;} queue <int> q;
int cur[N], deep[N]; bool bfs (int s, int t) {
memcpy (cur, head, sizeof (head));
memset (deep, 0x3f, sizeof (deep));
deep[s] = 0; q.push (s);
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == INF && e[i].f) {
deep[v] = deep[u] + 1;
q.push (v);
}
}
}
return deep[t] != INF;
} LL dfs (int u, int t, LL lim) {
if (u == t || !lim) {
return lim;
}
int tmp = 0, flow = 0;
for (int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == deep[u] + 1) {
tmp = dfs (v, t, min (lim, e[i].f));
lim -= tmp;
flow += tmp;
e[i ^ 0].f -= tmp;
e[i ^ 1].f += tmp;
if (!lim) break;
}
}
return flow;
} int main () {
memset (head, -1, sizeof (head));
cin >> n >> m;
int s = f2 (m + 1), t = f2 (m + 2);
for (int i = 1; i <= n; ++i) {
static int cho;
cin >> cho;
if (cho == 0) {
add_len (s, node (i), INF + 1);
add_len (node (i), t, INF + 0);
} else {
add_len (s, node (i), INF + 0);
add_len (node (i), t, INF + 1);
}
//s -> 0, t -> 1
}
for (int i = 1; i <= m; ++i) {
static int x, y;
cin >> x >> y;
add_len (s, f1 (i), 1); add_len (f1 (i), node (x), INFF); add_len (f1 (i), node (y), INFF);
add_len (f2 (i), t, 1); add_len (node (x), f2 (i), INFF); add_len (node (y), f2 (i), INFF);
}
LL min_cut = 0;
while (bfs (s, t)) {
min_cut += dfs (s, t, INFF);
}
LL ans = (min_cut - n * INF - m);
cout << ans << endl;
}

Luogu P2057 [SHOI2007]善意的投票的更多相关文章

  1. 【题解】Luogu P2057 [SHOI2007]善意的投票

    原题传送门 我们一眼就能看出这是一道最小割的题 我们设不睡觉这种状态为S,睡觉这种状态为T 对于每个人,如果不想睡觉,就从S向这个人连流量为1的边,否则,就从这个人向T连流量为1的边 对于每一对朋友, ...

  2. 洛谷 P2057 [SHOI2007]善意的投票 解题报告

    P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  3. P2057 [SHOI2007]善意的投票 (最大流)

    题目 P2057 [SHOI2007]善意的投票 解析 网络流的建模都如此巧妙. 我们把同意的意见看做源点\(s\),不同意的意见看做汇点\(t\). 那我们\(s\)连向所有同意的人,\(t\)连向 ...

  4. P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查

    P2057 [SHOI2007]善意的投票 / [JLOI2010]冠军调查 拿来练网络流的qwq 思路:如果i不同意,连边(i,t,1),否则连边(s,i,1).好朋友x,y间连边(x,y,1)(y ...

  5. 洛谷P2057 [SHOI2007]善意的投票 题解

    题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...

  6. P2057 [SHOI2007]善意的投票 最小割

    $ \color{#0066ff}{ 题目描述 }$ 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  7. P2057 [SHOI2007]善意的投票

    思路 简单的最小割模型 最小割的模型就是选出一些边,把点集划分成S和T两个部分,使得代价最小 到这题上就是板子了 代码 #include <cstdio> #include <alg ...

  8. [洛谷P2057][SHOI2007]善意的投票

    题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...

  9. 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流

    正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...

随机推荐

  1. [20190416]11g下那些latch是Exclusive的.txt

    [20190416]11g下那些latch是Exclusive的.txt --//昨天测试了11g下那些latch是共享的,链接:--//是否反过来剩下的都是Exclusive的.继续测试: 1.环境 ...

  2. python 实例六

    https://www.cnblogs.com/evablogs/p/6783498.html 题目:斐波那契数列. 程序分析:这个数列从第3项开始,每一项都等于前两项之和.故 n=1,2,f=1 n ...

  3. win10 系统 wifi自动断开连接 wifi热点不稳定

    我的系统的电脑是win10系统,笔记本 下载了一个wifi共享大师,但是wifi总是自动断,于是就找了找问题所在 在网上看了许多方案,大多数都是    在   电源管理  把[允许计算机关闭此设备以节 ...

  4. Zookeeper与Kafka基础概念和原理

    1.zookeeper概念介绍 在介绍ZooKeeper之前,先来介绍一下分布式协调技术,所谓分布式协调技术主要是用来解决分布式环境当中多个进程之间的同步控制,让他们有序的去访问某种共享资源,防止造成 ...

  5. centos7.4系统升级kernel内核

    在实验环境下,已安装了最新的CentOS 7.4操作系统,现在需要升级内核版本. 实验环境CentOS-7-x86_64-Minimal-1708.iso CentOS Linux release 7 ...

  6. java 非访问修饰符 final 的用法

    final 修饰符,用来修饰类.方法和变量 final修饰的类不能被继承 举例,String类是final类,不可以被继承: final修饰的方法不能被重写 只是不能重写,也就是不能被子类修改,但是可 ...

  7. 基于tcp的云盘上传下载的模拟

    老师的博客: server端 import json import struct import json import struct import socket import os sk = sock ...

  8. Maven的简单使用

    Maven使用 在官网下载maven: http://maven.apache.org/download.cgi 解压到D盘(位置随便) 配置环境变量 打开dos窗口,检测是否成功,出现如下画面表示配 ...

  9. LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)

    写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT ...

  10. Mac下的效率工具autojump

    (转) IDE 用起来总是得不到满足,Mac 适合搞开发,我也十分喜欢 Mac 系统,当然可以说喜欢 Unix/Linux 系统.今天在 .zshrc 文件中添加了这么几行快捷命令: alias go ...