题目类型:差分,线段树

传送门:>Here<

题意:给出一个数列,每次给一个区间对应的加上一个等差数列,并询问某一个元素目前的值。

解题思路

所谓差分,我个人的理解就是用\(O(1)\)的方法来维护前缀和,当然查询变为了\(O(n)\)。差分就好像将前缀和变成了一个数一样——当一段区间需要全部加上\(k\)时:差分数组某一位上\(+k\),意味着这之后的所有元素都将\(+k\)。就好像一条带子拖到最后了。因此我们如果仅仅操作一个区间的话,那么要把后面多出来的带子减掉,于是我们再另外加一条负的带子在后面。

刚才谈论整个区间都加一个相同的数。如果整个区间加的是一个等差数列呢?相当于这个区间内所加的数,每个都比前面的多加\(d\)。效果就等价于在差分数组中,令这个区间的每个元素加上\(d\)。然后末尾要减去末项。依然使用刚才的比喻,将那么多条相同的带子依次叠放,假设区间长度是\(l\),那么最后一个元素那里肯定放着\(l\)条带子了。而我们在最后需要把这\(l\)条带子全部减掉。

因此,如果用差分来维护这道题,我们来总结一下步骤:(按照题意,等差数列的更新方法是\(l \ r \ k \ d\),代表左端点,右端点,首项,公差;设差分数组为\(s\))

  • 令\(s[l]+=k\)

  • 令\(s[l+1..r]+=d\)

  • 令\(s[r+1]-=k+d*(r-l)\)(末项)

由此我们发现,对于大多数的情况都是\(+d\),因此转化为一个区间更新的问题。差分数组的统计方法我们已经很熟悉了,需要从头遍历。因此元素\(p\)现在的值应该是:初始值 + \(s[1..p]\),因此转化为一个区间查询的问题

因此我们可以用线段树方便地\(O(logn)\)维护好

反思

一直以为差分和线段树维护的几乎是同一个东西,却从来没想过线段树可以用来维护差分!线段树维护差分,就好像求和的和。然而等差数列就好像是三维的一样,先由差分转化为二维,然后由线段树转化为线性。

正好像我们在找规律时所作的一样,差,差之差,差之差之差。那么这道题就好像倒过来,和,和的和,和的和的和……

Code

不需要建树,线段树写起来好像异常短小精悍……\(qwq\)


/*By DennyQi 2018*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int MAXN = 100010;
const int INF = 1061109567;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
int x = 0; int w = 1; register char c = getchar();
for(; c ^ '-' && (c < '0' || c > '9'); c = getchar());
if(c == '-') w = -1, c = getchar();
for(; c >= '0' && c <= '9'; c = getchar()) x = (x<<3) + (x<<1) + c - '0'; return x * w;
}
int N,M,opt,l,r,x,y;
int a[MAXN];
int val[MAXN<<2],lazy[MAXN<<2];
struct SegmentTree{
inline void pushdown(int rt, int l, int r){
if(lazy[rt]){
int mid = (l+r)/2;
val[rt<<1] += lazy[rt] * (mid-l+1);
val[rt<<1|1] += lazy[rt] * (r-(mid+1)+1);
lazy[rt<<1] += lazy[rt];
lazy[rt<<1|1] += lazy[rt];
lazy[rt] = 0;
}
}
int query(int rt, int l, int r, int x, int y){
if(l > y || r < x) return 0;
if(x <= l && r <= y) return val[rt];
pushdown(rt, l, r);
int mid = (l+r)/2;
return query(rt<<1,l,mid,x,y) + query(rt<<1|1,mid+1,r,x,y);
}
void update(int rt, int l, int r, int x, int y, int k){
if(l > y || r < x) return;
if(x <= l && r <= y){
lazy[rt] += k;
val[rt] += (r-l+1) * k;
return;
}
pushdown(rt,l,r);
int mid = (l+r)/2;
update(rt<<1,l,mid,x,y,k), update(rt<<1|1,mid+1,r,x,y,k);
val[rt] = val[rt<<1] + val[rt<<1|1];
}
}qxz;
int main(){
N = read(), M = read();
for(int i = 1; i <= N; ++i){
a[i] = read();
}
while(M--){
opt = read();
if(opt == 1){
l = read(), r = read(), x = read(), y = read();
qxz.update(1,1,N,l,l,x);
qxz.update(1,1,N,l+1,r,y);
qxz.update(1,1,N,r+1,r+1,-(x+y*(r-l)));
}
else{
x = read();
printf("%d\n", qxz.query(1,1,N,1,x)+a[x]);
}
}
return 0;
}

[洛谷P1438] 无聊的数列的更多相关文章

  1. 洛谷P1438 无聊的数列 [zkw线段树]

    题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...

  2. 洛谷 P1438 无聊的数列

    题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]},支持两种操作: 1.1 ...

  3. 洛谷 P1438 无聊的数列 题解

    原题链接 首先,我们考虑用差分解决问题. 用 \(x_i\) 表示原数列,\(a_i = x_i - x_{i-1}\) 那么,先普及一下差分: 如果我们只需要维护区间加值,单点求值的话,你会发现两个 ...

  4. 洛谷P1438 无聊的数列 (线段树+差分)

    变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...

  5. Luogu P1438无聊的数列

    洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...

  6. P1438 无聊的数列 (差分+线段树)

    题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r- ...

  7. P1438 无聊的数列

    P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...

  8. [luogu P1438] 无聊的数列

    [luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...

  9. 洛谷.2042.[NOI2005]维护数列(Splay)

    题目链接 2017.12.24 第一次写: 时间: 2316ms (1268ms) 空间: 19.42MB (19.5MB)(O2) 注:洛谷测的时间浮动比较大 /* 插入一段数:将这些数先单独建一棵 ...

随机推荐

  1. Xamarin 学习笔记 - Layout(布局)

    本文翻译自CodeProject文章:https://www.codeproject.com/Articles/1227733/Xamarin-Notes-Xamarin-Forms-Layouts ...

  2. MongoDB的存储结构及对空间使用率的影响

    MongoDB的存储结构及对空间使用率的影响 使用MongoDB一段时间的同学肯定会发现,MongoDB往往会占用比实际数据大小多不少空间的问题.如果利用db.stats()命令去查看,会发现Mong ...

  3. git第一次提交代码到码云

    转载请标明出处:https://www.cnblogs.com/tangZH/p/10229598.html 不说废话,来看重点. 1.首先注册码云账号,然后建立仓库,这些就直接跳过,很简单. 2.下 ...

  4. c#核心基础-委托

    委托是一个类型.C#中的委托是面向对象的,并且它是类型安全的 当创建委托实例的时候,创建的实例会包含一个调用列表,在调用列表中可以包含多个方法.每个方法称作一个调用实体.调用实体可以是静态方法,也可以 ...

  5. Python Learning: 01

    After a short period of  new year days, I found life a little boring. So just do something funny--Py ...

  6. sizeof和strlen()区别及用法

    //sizeof是以字节为单位计算变量或类型所占内存大小,它是属于C语言运算符系列:而strlen()是一个函数,是计算字符串长度(也是以字节为单位,但略有区别):比如: char array[] = ...

  7. ipa企业签名

    包天包周包月季度包年套餐_app/ios应用企业签名_ios企业签名 常见问题 需要提供 App 的源码吗? 不需要源码,只发 ipa 或者 app 格式的安装包即可. 客户怎么安装签名好的软件? 安 ...

  8. 初学Django项目可能会遇到的问题

    1. 出现莫名其妙的 app01 我项目中的app名字并不是app01,可是运行python manage.py makemigrations的时候总是提示app01不是已安装的app Applyin ...

  9. flink window的early计算

    Tumbing Windows:滚动窗口,窗口之间时间点不重叠.它是按照固定的时间,或固定的事件个数划分的,分别可以叫做滚动时间窗口和滚动事件窗口.Sliding Windows:滑动窗口,窗口之间时 ...

  10. 网络流 之 dinic算法

    我觉得这个dinic的算法和之前的增广路法差不多 .使用BFS对残余网络进行分层,在分层时,只要进行到汇点的层次数被算出即可停止, 因为按照该DFS的规则,和汇点同层或更下一层的节点,是不可能走到汇点 ...