Codeforces 1120D Power Tree [最小生成树]
这题怎么一个中文题解都没有,是不是你们都认为太水了……
思路
显然可以用dfs序把每个节点变成给一个区间的叶子节点加上某个数。
显然把叶子序列差分一下变为\(a_1,a_2,...,a_n,a_{n+1}\)之后\([l,r]\)区间加相当于\(l\)加,\(r+1\)减。
然后这就可以变成一个带权无向图。
为了让它可以搞出任意序列,我们需要使这个图连通,也就是求出最小生成树以及每条边是否可以在最小生成树内。
\(kruskal\)搞一搞即可。
为什么这样一定合法呢?
考虑以\(n+1\)为根,把树变成一棵有根树。
每个点可以加上任意数,同时父亲减去这个数。
显然最后可以弄出任意和为0的差分序列,也就是任意原数列。
代码
#include<bits/stdc++.h>
clock_t t=clock();
namespace my_std{
    using namespace std;
    #define pii pair<int,int>
    #define fir first
    #define sec second
    #define MP make_pair
    #define rep(i,x,y) for (int i=(x);i<=(y);i++)
    #define drep(i,x,y) for (int i=(x);i>=(y);i--)
    #define go(x) for (int i=head[x];i;i=edge[i].nxt)
    #define templ template<typename T>
    #define sz 202020
    typedef long long ll;
    typedef double db;
    mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    templ inline T rnd(T l,T r) {return uniform_int_distribution<T>(l,r)(rng);}
    templ inline bool chkmax(T &x,T y){return x<y?x=y,1:0;}
    templ inline bool chkmin(T &x,T y){return x>y?x=y,1:0;}
    templ inline void read(T& t)
    {
        t=0;char f=0,ch=getchar();double d=0.1;
        while(ch>'9'||ch<'0') f|=(ch=='-'),ch=getchar();
        while(ch<='9'&&ch>='0') t=t*10+ch-48,ch=getchar();
        if(ch=='.'){ch=getchar();while(ch<='9'&&ch>='0') t+=d*(ch^48),d*=0.1,ch=getchar();}
        t=(f?-t:t);
    }
    template<typename T,typename... Args>inline void read(T& t,Args&... args){read(t); read(args...);}
    char __sr[1<<21],__z[20];int __C=-1,__zz=0;
    inline void Ot(){fwrite(__sr,1,__C+1,stdout),__C=-1;}
    inline void print(register int x)
    {
    	if(__C>1<<20)Ot();if(x<0)__sr[++__C]='-',x=-x;
    	while(__z[++__zz]=x%10+48,x/=10);
    	while(__sr[++__C]=__z[__zz],--__zz);__sr[++__C]='\n';
    }
    void file()
    {
        #ifndef ONLINE_JUDGE
        freopen("a.in","r",stdin);
        #endif
    }
    inline void chktime()
    {
        #ifndef ONLINE_JUDGE
        cout<<(clock()-t)/1000.0<<'\n';
        #endif
    }
    #ifdef mod
    ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x%mod) if (y&1) ret=ret*x%mod;return ret;}
    ll inv(ll x){return ksm(x,mod-2);}
    #else
    ll ksm(ll x,int y){ll ret=1;for (;y;y>>=1,x=x*x) if (y&1) ret=ret*x;return ret;}
    #endif
//	inline ll mul(ll a,ll b){ll d=(ll)(a*(double)b/mod+0.5);ll ret=a*b-d*mod;if (ret<0) ret+=mod;return ret;}
}
using namespace my_std;
int n;
ll c[sz];
namespace getans
{
    int fa[sz];
    void init(){rep(i,1,n) fa[i]=i;}
    int getfa(int x){return x==fa[x]?x:fa[x]=getfa(fa[x]);}
    bool ok[sz];
    struct hh{int f,t;ll w;int id;}edge[sz];
    inline bool operator < (const hh &x,const hh &y){return x.w<y.w;}
    ll ans;
    void work(int L,int R)
    {
        rep(j,L,R)
        {
            int x=getfa(edge[j].f),y=getfa(edge[j].t);
            if (x==y) continue;
            ok[edge[j].id]=1;
        }
        rep(j,L,R)
        {
            int x=getfa(edge[j].f),y=getfa(edge[j].t);
            if (x==y) continue;
            ans+=edge[j].w;
            fa[x]=y;
        }
    }
    int MAIN()
    {
        init();
        sort(edge+1,edge+n+1);
        int lst=1;
        rep(i,1,n)
        {
            if (edge[i].w==edge[lst].w) continue;
            work(lst,i-1);
            lst=i;
        }
        work(lst,n);
        cout<<ans<<' ';
        int cnt=0;
        rep(i,1,n) if (ok[i]) ++cnt;
        printf("%d\n",cnt);
        rep(i,1,n) if (ok[i]) printf("%d ",i);
        return 0;
    }
}
namespace build
{
    struct hh{int t,nxt;}edge[sz<<1];
    int head[sz],ecnt;
    void make_edge(int f,int t)
    {
        edge[++ecnt]=(hh){t,head[f]};
        head[f]=ecnt;
        edge[++ecnt]=(hh){f,head[t]};
        head[t]=ecnt;
    }
    int dfn[sz],low[sz],pre[sz],cnt;
    int a[sz],cc;
    #define v edge[i].t
    void dfs(int x,int fa)
    {
        pre[dfn[x]=++cnt]=x;
        bool flg=0;
        go(x) if (v!=fa) flg=1,dfs(v,x);
        low[x]=cnt;
        if (!flg) a[++cc]=dfn[x];
    }
    #undef v
    void init()
    {
        int x,y;
        rep(i,1,n-1) read(x,y),make_edge(x,y);
        dfs(1,0);
        rep(i,1,n)
        {
            int L=lower_bound(a+1,a+cc+1,dfn[i])-a;
            int R=upper_bound(a+1,a+cc+1,low[i])-a;
            getans::edge[i]=(getans::hh){L,R,c[i],i};
        }
    }
}
int main()
{
    file();
    read(n);
    rep(i,1,n) read(c[i]);
    build::init();
    return getans::MAIN();
}
Codeforces 1120D Power Tree [最小生成树]的更多相关文章
- [Codeforces 1245D] Shichikuji and Power Grid (最小生成树)
		[Codeforces 1245D] Shichikuji and Power Grid (最小生成树) 题面 有n个城市,坐标为\((x_i,y_i)\),还有两个系数\(c_i,k_i\).在每个 ... 
- Problem - D - Codeforces  Fix a Tree
		Problem - D - Codeforces Fix a Tree 看完第一名的代码,顿然醒悟... 我可以把所有单独的点全部当成线,那么只有线和环. 如果全是线的话,直接线的条数-1,便是操作 ... 
- [CodeForces - 1225D]Power Products 【数论】 【分解质因数】
		[CodeForces - 1225D]Power Products [数论] [分解质因数] 标签:题解 codeforces题解 数论 题目描述 Time limit 2000 ms Memory ... 
- [Codeforces 1246B] Power Products (STL+分解质因数)
		[Codeforces 1246B] Power Products (STL+分解质因数) 题面 给出一个长度为\(n\)的序列\(a_i\)和常数k,求有多少个数对\((i,j)\)满足\(a_i ... 
- Codeforces 1120D (树形DP 或 最小生成树)
		题意看这篇博客:https://blog.csdn.net/dreaming__ldx/article/details/88418543 思路看这篇:https://blog.csdn.net/cor ... 
- Codeforces Round #597 (Div. 2) D. Shichikuji and Power Grid 最小生成树
		D. Shichikuji and Power Grid</centerD.> Shichikuji is the new resident deity of the South Blac ... 
- CF1120D Power Tree(构造题,差分,最小生成树)
		很有趣的一道题. 首先可以对每个叶子进行编号.按照DFS到的顺序即可.(假设从 $1$ 到 $k$) 然后对每个点求出它管辖的所有叶子的编号.因为是DFS序所以这一定是个区间.设点 $u$ 的这个区间 ... 
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
		给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ... 
- HDU 4408 Minimum Spanning Tree 最小生成树计数
		Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ... 
随机推荐
- openstack第三章:nova
			第三篇nova— 计算服务 一.nova介绍: Nova 是 OpenStack 最核心的服务,负责维护和管理云环境的计算资源.OpenStack 作为 IaaS 的云操作系统 ... 
- vue axios封装以及登录token过期跳转问题
			Axios配置JWT/封装插件/发送表单数据 首先请务必已仔细阅读 Axios 文档并熟悉 JWT: 中文文档 JWT 中文文档 安装 npm install axios npm install es ... 
- Starter pom
			以下图片是引用书籍内容: 比如你在用boot写一个web项目,在maven中你会导入: <!-- 导入spring boot的web支持 --> <dependency> &l ... 
- libstdc++.so.6: cannot open shared object file: No such file or directory
			sudo apt-get install lib32stdc++6 sudo apt-get install lib32z1 
- luogu P1744 采购特价商品
			实话说我本来想找SPFA的题,结果我硬生生的把这道题做成了Floyd 先来看题,我们会发现如果把他所给的变量都输入,那么会发现用Floyd的解法,输入占了main函数的一半长度... 题目分为两步走: ... 
- Scrapy 框架  中间件,信号,定制命令
			中间件 下载器中间件 写中间件 from scrapy.http import HtmlResponse from scrapy.http import Request class Md1(objec ... 
- python 10道面试陷阱题目
- Meterpreter命令详解
			0x01初识Meterpreter 1.1.什么是Meterpreter Meterpreter是Metasploit框架中的一个扩展模块,作为溢出成功以后的攻击载荷使用,攻击载荷在溢出攻击成功以 ... 
- 精通Dubbo——Dubbo支持的协议的详解
			转: 精通Dubbo——Dubbo支持的协议的详解 2017年06月02日 22:26:57 孙_悟_空 阅读数:44500 Dubbo支持dubbo.rmi.hessian.http.webse ... 
- jdbc封装模拟用户登录
			dao层 接口 package com.qu.dao; public interface ILoginDAO { /** * 模拟用户登录 * 验证用户名 密码是否正确 * select * from ... 
