1. 算法介绍
      1. FIFO:该算法总是淘汰最先进入内存的页面,即选择在内存中驻留时间最久的页面予以淘汰。该算法实现简单,只需把一个进程已调入内存的页面,按先后次序链接成一个队列,并设置一个指针,称为替换指针,使它总是指向最老的页面。但该算法与进程实际运行的规律不相适应,因为在进程中,有些页面经常被访问,比如,含有全局变量、常用函数、例程等的页面,FIFO 算法并不能保证这些页面不被淘汰。
      2. LRU(least recently used)是将近期最不会访问的数据给淘汰掉,LRU是认为最近被使用过的数据,那么将来被访问的概率也多,最近没有被访问,那么将来被访问的概率也比较低。LRU算法简单,存储空间没有被浪费,所以还是用的比较广泛的。
  2. 实现思路
    1. 数组作为内存块,另一个数组存储页号
    2. FIFS:

      读入的页号首先在内存块中查找,没有查找到,当前物理块若为空,则调入页号,若非空,则按照先到先出的顺序,调入调出,若查找到页号,则继续查找下一个。

    3. LUR:

      内存块为空时,先读入的页号进入内存块直到内存块满,将其等待时间都置为0,接下来的页号,如果在内存块中找到,则将该页号的等待时间置为0,若找不到,则查找内存块中等待时间最长的页号置换出去,新进来的页号等待时间置为0。然后将内存块中其余页号的等待时间都加1。

    4. 流程图:

    5. lur:

      FIFS:

  3. 代码
  4.  #include<iostream>
    using namespace std;
    //伪代码: 内存大小,作业号,
    //物理块,
    int a[],len,b[],i,j,n;
    int c[][]; void readn(int n){ cout<<"请输入页面号(-1结束)";
    len=;
    int m=;
    while(m!=-){
    cin>>a[len];
    m=a[len];
    len++;
    }
    len=len-;
    cout<<"输入完毕"<<endl;
    // for( j=0;j<len;j++){
    // cout<<a[j];
    // }
    } void FIFO(int n,int a[]){
    int cnum=;
    for( j=;j<n;j++){
    b[j]=a[j]; }
    //输出第一个b[n],
    cout<<"当前物理块存放的页号:";
    for( j=;j<n;j++){
    cout<<b[j]<<" ";
    }
    cout<<endl;
    int x=,flag=,sum=;
    for( i=n-;i<len;i++){ for( j=;j<n;j++){
    if(a[i]==b[j])
    break;
    }
    int q=x;
    if(j>=n){
    b[x]=a[i];
    x=(x+)%n; flag=;
    sum++;
    }
    if(flag==){
    cout<<"置换了b["<<q<<"]"<<endl;
    }
    cout<<"当前物理块存放的页号:";
    for( j=;j<n;j++){
    cout<<b[j]<<" ";
    }
    cout<<endl;
    flag=;
    }
    //计算缺页率
    cout<<"FIFO缺页次数:"<<sum+n<<endl;
    cout<<"FIFO置换次数:"<<sum <<endl;
    cout<<"FIFO缺页率:"<<(double)(sum+n)/len<<endl; } void LRU(int n,int a[]){ int cnum=;
    for( j=;j<n;j++){
    c[j][]=a[j];
    c[j][]=;
    }
    //输出第一个b[n],
    cout<<"当前物理块存放的页号:";
    for( j=;j<n;j++){
    cout<<c[j][]<<" ";
    }
    cout<<endl;
    int x=,flag=,sum=;
    for( i=n-;i<len;i++){
    //查找在不在内存里面
    for( j=;j<n;j++){
    if(a[i]==c[j][]){
    c[j][]=;//将时间恢复为0 //等待的时间加1
    for(int k=;k<n;k++){
    if(c[k][]!=a[i]){
    c[k][]++;
    }
    }
    break;
    } }
    int q;
    if(j>=n){//不在内存里面,找最久没用的
    int tmp=c[x][],zhen=x;
    for(int l=;l<n;l++){
    if(c[l][]>tmp){
    tmp=c[l][];
    zhen=l;
    }
    }
    x=zhen;
    q=x;
    c[x][]=a[i];
    c[x][]=;
    for(int k=;k<n;k++){
    if(c[k][]!=a[i]){
    c[k][]++;
    }
    }
    x=(x+)%n;
    flag=;
    sum++;
    }
    if(flag==){
    cout<<"置换了c["<<q<<"]"<<endl;
    }
    cout<<"当前物理块存放的页号:";
    for( j=;j<n;j++){
    cout<<c[j][]<<" ";
    }
    cout<<endl;
    flag=;
    }
    //计算缺页率
    cout<<"LUR缺页次数:"<<sum+n<<endl;
    cout<<"LUR置换次数:"<<sum <<endl;
    cout<<"LUR缺页率:"<<(double)(sum+n)/len<<endl; } int main(){
    //物理块
    cout<<"请输入物理块大小";
    cin>>n;
    readn(n);
    cout<<"FIFO算法:";
    FIFO(n,a);
    cout<<endl;
    cout<<"LRU算法:";
    LRU(n,a); return ;
    }
  5. 运行结果

【页面置换算法】LRC算法和FIFS算法的更多相关文章

  1. 网络流之最大流算法(EK算法和Dinc算法)

    最大流 网络流的定义: 在一个网络(有流量)中有两个特殊的点,一个是网络的源点(s),流量只出不进,一个是网络的汇点(t),流量只进不出. 最大流:就是求s-->t的最大流量 假设 u,v 两个 ...

  2. 单源最短路径算法——Bellman-ford算法和Dijkstra算法

     BellMan-ford算法描述 1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0; 2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V ...

  3. TCP_NODELAY和TCP_CORK nagle算法和cork算法

    TCP_NODELAY 默认情况下,发送数据採用Nagle 算法.这样尽管提高了网络吞吐量,可是实时性却减少了,在一些交互性非常强的应用程序来说是不同意的.使用TCP_NODELAY选项能够禁止Nag ...

  4. FIFO调度算法和LRU算法

    一.理论 FIFO:先进先出调度算法 LRU:最近最久未使用调度算法 两者都是缓存调度算法,经常用作内存的页面置换算法. 打一个比方,帮助你理解.你有很多的书,比如说10000本.由于你的书实在太多了 ...

  5. 使用Apriori算法和FP-growth算法进行关联分析

    系列文章:<机器学习实战>学习笔记 最近看了<机器学习实战>中的第11章(使用Apriori算法进行关联分析)和第12章(使用FP-growth算法来高效发现频繁项集).正如章 ...

  6. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  7. mahout中kmeans算法和Canopy算法实现原理

    本文讲一下mahout中kmeans算法和Canopy算法实现原理. 一. Kmeans是一个很经典的聚类算法,我想大家都非常熟悉.虽然算法较为简单,在实际应用中却可以有不错的效果:其算法原理也决定了 ...

  8. 转载:最小生成树-Prim算法和Kruskal算法

    本文摘自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html 最小生成树-Prim算法和Kruskal算法 Prim算 ...

  9. 0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

    一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i ...

随机推荐

  1. Non-decreasing Array

    Given an array with n integers, your task is to check if it could become non-decreasing by modifying ...

  2. pyspider

    Linux系统我使用CentOS.对于pycurl安装问题比较好解决,只需要先安装对应的开发包即可.执行如下命令: yum install python-devel curl-devel 分别安装py ...

  3. 【彻底解决】django migrate (mysql.W002) 【专治强迫症】

    cmd中使用python3 manage.py migrate命令,报warn,很多人都遇到过 解决办法: settings.py文件夹加入DATABASES['OPTIONS']['init_com ...

  4. 如何在MySQL中设置主从复制

    mysql主从同步定义 主从同步机制 配置主从同步 配置主服务器 配置从服务器 使用主从同步来备份 使用mysqldump来备份 备份原始文件 主从同步的小技巧 排错 Slave_IO_Running ...

  5. JpaManytoMany

    package com.allqj.calculator.entity; import com.fasterxml.jackson.annotation.JsonIgnoreProperties; i ...

  6. 2018-2019-2 20165323《网络攻防技术》Exp5 MSF基础应用

    一.知识点总结 1.MSF攻击方法 主动攻击:扫描主机漏洞,进行攻击 攻击浏览器 攻击其他客户端 2.MSF的六种模块 渗透攻击模块Exploit Modules:攻击漏洞,把shellcode&qu ...

  7. C# Winform无边框窗口拖动

    Windows 的 API 代码如下: [DllImport("user32.dll")] public static extern bool ReleaseCapture(); ...

  8. mysql8.0 定时创建分区表记录 每天定时创建下一天的分区表

    因单表数据太大, 需要表按时间分区 分区字段 pay_out_date 按天分 要求自动创建 1. 创建分区表 MYSQL的分区字段,必须包含在主键字段内 常见错误提示 错误提示:#1503 A PR ...

  9. Javascript数据结构与算法--栈的实现与用法

    栈数据结构 栈是一种遵从后进先出(LIFO)原则的有序集合.新添加的或者待删除的元素都保存在栈的同一端,称作栈顶,另一端就叫栈底.在栈里,新元素都靠近栈顶,旧元素都接近栈底. 我们在生活中常能看到栈的 ...

  10. Python 实现auto linlink 连连看

    先上知乎上大神所写: 你看过/写过哪些有意思的代码? 然后别急着看blog,玩一把游戏再说! 看知乎评论,有人说他用了一个下午时间就写出来了. wo kao!!! 我断断续续写了一周的下午才搞定,然后 ...