MapReduce简介

MapReduce是一种并行可扩展计算模型,并且有较好的容错性,主要解决海量离线数据的批处理。实现下面目标
★ 易于编程
★ 良好的扩展性
★ 高容错性
 

MapReduce有哪些角色?各自的作用是什么?

MapReduce由JobTracker和TaskTracker组成。JobTracker负责资源管理和作业控制,TaskTracker负责任务的运行。
 

MapReduce程序执行流程

程序执行流程图如下:
 
(1) 开发人员编写好MapReduce program,将程序打包运行。
(2) JobClient向JobTracker申请可用Job,JobTracker返回JobClient一个可用Job ID。
(3) JobClient得到Job ID后,将运行Job所需要的资源拷贝到共享文件系统HDFS中。
(4) 资源准备完备后,JobClient向JobTracker提交Job。
(5) JobTracker收到提交的Job后,初始化Job。
(6) 初始化完成后,JobTracker从HDFS中获取输入splits(作业可以该启动多少Mapper任务)。
(7) 与此同时,TaskTracker不断地向JobTracker汇报心跳信息,并且返回要执行的任务。
(8) TaskTracker得到JobTracker分配(尽量满足数据本地化)的任务后,向HDFS获取Job资源(若数据是本地的,不需拷贝数据)。
(9) 获取资源后,TaskTracker会开启JVM子进程运行任务。
注:
(3)中资源具体指什么?主要包含:
    ● 程序jar包、作业配置文件xml
    ● 输入划分信息,决定作业该启动多少个map任务
    ● 本地文件,包含依赖的第三方jar包(-libjars)、依赖的归档文件(-archives)和普通文件(-files),如果已经上传,则不需上传
 

MapReduce工作原理

工作原理图如下:
map task
程序会根据InputFormat将输入文件分割成splits,每个split会作为一个map task的输入,每个map task会有一个内存缓冲区,
输入数据经过map阶段处理后的中间结果会写入内存缓冲区,并且决定数据写入到哪个partitioner,当写入的数据到达内存缓冲
区的的阀值(默认是0.8),会启动一个线程将内存中的数据溢写入磁盘,同时不影响map中间结果继续写入缓冲区。在溢写过程中,
MapReduce框架会对key进行排序,如果中间结果比较大,会形成多个溢写文件,最后的缓冲区数据也会全部溢写入磁盘形成一个溢写
文件(最少有一个溢写文件),如果是多个溢写文件,则最后合并所有的溢写文件为一个文件。

reduce task

当所有的map task完成后,每个map task会形成一个最终文件,并且该文件按区划分。reduce任务启动之前,一个map task完成后,
就会启动线程来拉取map结果数据到相应的reduce task,不断地合并数据,为reduce的数据输入做准备,当所有的map tesk完成后,
数据也拉取合并完毕后,reduce task 启动,最终将输出输出结果存入HDFS上。
 

MapReduce中Shuffle过程

Shuffle的过程:描述数据从map task输出到reduce task输入的这段过程。
我们对Shuffle过程的期望是:
★ 完整地从map task端拉取数据到reduce task端 
★ 跨界点拉取数据时,尽量减少对带宽的不必要消耗
★ 减小磁盘IO对task执行的影响
 
先看map端:
split被送入map task后,程序库决定数据结果数据属于哪个partitioner,写入到内存缓冲区,到达阀值,开启溢写过程,进行key排序,
如果有combiner步骤,则会对相同的key做归并处理,最终多个溢写文件合并为一个文件。
 
再看reduce端:
多个map task形成的最终文件的对应partitioner会被对应的reduce task拉取至内存缓冲区,对可能形成多个溢写文件合并,最终
作为resuce task的数据输入 。
 

MapReduce编程主要组件

InputFormat类:分割成多个splits和每行怎么解析。   
Mapper类:对输入的每对<key,value>生成中间结果。
Combiner类:在map端,对相同的key进行合并。
Partitioner类:在shuffle过程中,将按照key值将中间结果分为R份,每一份都由一个reduce去完成。
Reducer类:对所有的map中间结果,进行合并。
OutputFormat类:负责输出结果格式。
编程框架如下:
 
 

针对MapReduce的缺点,YARN解决了什么?

MapReduce由以下缺点:
★ JobTracker挂掉,整个作业挂掉,存在单点故障
★ JobTracker既负责资源管理又负责作业控制,当作业增多时,JobTracker内存是扩展的瓶颈
★ map task全部完成后才能执行reduce task,造成资源空闲浪费
YARN设计考虑以上缺点,对MapReduce重新设计:
★ 将JobTracker职责分离,ResouceManager全局资源管理,ApplicationMaster管理作业的调度
★ 对ResouceManager做了HA设计
★ 设计了更细粒度的抽象资源容器Container

MapReduce的工作原理的更多相关文章

  1. Hadoop 4、Hadoop MapReduce的工作原理

    一.MapReduce的概念 MapReduce是hadoop的核心组件之一,hadoop要分布式包括两部分,一是分布式文件系统hdfs,一部是分布式计算框就是mapreduce,两者缺一不可,也就是 ...

  2. Hadoop基础-MapReduce的工作原理第二弹

    Hadoop基础-MapReduce的工作原理第二弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Split(切片)  1>.MapReduce处理的单位(切片) 想必 ...

  3. Hadoop基础-MapReduce的工作原理第一弹

    Hadoop基础-MapReduce的工作原理第一弹 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在本篇博客中,我们将深入学习Hadoop中的MapReduce工作机制,这些知识 ...

  4. MapReduce 1工作原理图文详解

    MapReduce工作原理图文详解 一 MapReduce程序执行流程 程序执行流程图如下: 流程分析:1.在客户端启动一个作业.2.向JobTracker请求一个Job ID.3.将运行作业所需要的 ...

  5. 【hadoop】细读MapReduce的工作原理

    前言:中秋节有事外加休息了一天,今天晚上重新拾起Hadoop,但感觉自己有点烦躁,不知后续怎么选择学习Hadoop的方法. 干脆打开电脑,决定: 1.先将Hadoop的MapReduce和Yarn基本 ...

  6. MapReduce工作原理图文详解

    目录:1.MapReduce作业运行流程2.Map.Reduce任务中Shuffle和排序的过程 1.MapReduce作业运行流程 流程示意图: 流程分析: 1.在客户端启动一个作业. 2.向Job ...

  7. <转>MapReduce工作原理图文详解

    转自 http://weixiaolu.iteye.com/blog/1474172前言:  前段时间我们云计算团队一起学习了hadoop相关的知识,大家都积极地做了.学了很多东西,收获颇丰.可是开学 ...

  8. MapReduce工作原理讲解

    第一部分:MapReduce工作原理 MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•TaskT ...

  9. MapReduce工作原理

    第一部分:MapReduce工作原理   MapReduce 角色•Client :作业提交发起者.•JobTracker: 初始化作业,分配作业,与TaskTracker通信,协调整个作业.•Tas ...

随机推荐

  1. spring boot集成swagger,自定义注解,拦截器,xss过滤,异步调用,guava限流,定时任务案例, 发邮件

    本文介绍spring boot集成swagger,自定义注解,拦截器,xss过滤,异步调用,定时任务案例 集成swagger--对于做前后端分离的项目,后端只需要提供接口访问,swagger提供了接口 ...

  2. k8s部署etcd数据库集群

    ⒈下载 https://github.com/etcd-io/etcd/releases ⒉解压 tar -zxvf etcd-v3.3.12-linux-amd64.tar.gz ⒊移动可执行文件及 ...

  3. Win 10中使用图片查看器

    在Win10中,照片应用提供了时间线.专辑等更丰富的图片管理功能,但是对于基于文件夹打开浏览图片的方式显得笨拙, 放大缩小操作略繁琐,有时还会出现当前文件夹图片加载迟缓导致无法快速浏览的问题. 此时你 ...

  4. aptitude与apt-get

    aptitude 与 apt-get 一样,是 Debian 及其衍生系统中功能极其强大的包管理工具.与 apt-get 不同的是,aptitude 在处理依赖问题上更佳一些.举例来说,aptitud ...

  5. Codeforces Round #550 (Div. 3) F. Graph Without Long Directed Paths

            F. Graph Without Long Directed Paths time limit per test 2 seconds memory limit per test 256 ...

  6. 使用Node.js+Hexo+Github搭建个人博客

    一.为什么要花时间去搭建个人博客? 首先说说为什么我想要尝试着去搭建属于自己的Blog,古人云:“好记性不如烂笔头”.一开始我把笔记做在本子上.电脑上,发现要用的时候特别地不方便,而且越记越多.越多越 ...

  7. 高可用Redis(八):Redis主从复制

    1.Redis复制的原理和优化 1.1 Redis单机的问题 1.1.1 机器故障 在一台服务器上部署一个Redis节点,如果机器发生主板损坏,硬盘损坏等问题,不能在短时间修复完成,就不能处理Redi ...

  8. jsp中一个标签两种方式绑定两个click事件导致未执行的问题

    近日,在开发过程中,写了一个标签 <li id="a1" onclick="doSomething()">...</li> 在js页面中 ...

  9. 1、阿里云ECS内部机器端口被100.117.90段的ip疯狂扫描导致业务异常

    故障现象: 解决方案: 1.临时解决 iptables -I INPUT -s 100.117.0.0/12 -j DROP 2.后续解决 提交工单,寻找阿里服务. 后续定位是以前配置过的SLB在搞鬼 ...

  10. selenium爬取煎蛋网

    selenium爬取煎蛋网 直接上代码 from selenium import webdriver from selenium.webdriver.support.ui import WebDriv ...