[Bayes] openBUGS: this is not the annoying bugs in programming
Bayesian inference Using Gibbs Sampling
允许用户指定复杂的多层模型,并可使用MCMC算法来估计模型中的未知参数。
We use DAGs to specify models.
这里只涉及简单的贝叶斯网络,具体学习可见:
Carnegie Mellon University course 10-708, Spring 2017, Probabilistic Graphical Models
Ref: http://www.cnblogs.com/Dzhouqi/p/3204481.html
例子一
X and Y 不独立,但
X and Y 在Z情况下 条件独立。
表示:X ⊥ Y |Z
f (X, Y |Z) = f (X|Z) f (Y |Z).

知道了C 反而条件独立了? 如此理解:
a 孩子的血型是AB,其实“反作用”于c双亲不可能是O型血。然后,这个推断也影响了b孩子的血型可能性,即:也不可能是O型血。
知道了c,比如c父母只有A and B血型因子,那么a and b孩子变为了在c已知的条件下的独立。
例子二

此例同上。
例子三

已知c,能得出a and b条件独立? 不能。
在Gibbs的一点用处
If we want to sample from p(A, B, C, D, F ) with a Gibbs sampler we define each marginal full conditional distribution using the conditional independence pattern of the DAG.


手头有这样的数据,如下:

建立一个模型吧:

简化模型:

指定”似然函数“和”先验分布”:

Deterministic functions can be removed/restructured, so that:

Bayesian inference Using Gibbs Sampling
Download:
http://www.openbugs.net/w/Downloads
Install:
To install this, unpack by typing
tar zxvf OpenBUGS-3.2.3.tar.gz
cd OpenBUGS-3.2.3
then compile and install by typing
./configure
make
sudo make install
Run:
lolo@lolo-UX303UB$ OpenBUGS
OpenBUGS version 3.2. rev
type 'modelQuit()' to quit
OpenBUGS>
Use:
https://www.youtube.com/watch?v=UhYAz6d5_qg
打开三类文件:model, data, init。
Model --> Specification 依次加载各个文件。

Inference --> Samples 其实就是监视Init里的四个参数。

Model --> Update 迭代操作一次(Here 每次1000下)

Prior Sensitivity Analysis
The choice of prior(s) distribution must be determined with care, particularly, when the likelihood doesn't dominate the posterior.
If the likelihood dominates the posterior, the posterior distribution will essentially be invariant over a wide range of priors.
When the number of studies is large, the prior distribution will be less important. 数据量越大,先验的选择越不重要。
The non-informative prior distribution will be very useful in the situation when prior information, expectations and beliefs are minimal or not available.

Figure, 先验概率,后验概率 和 似然函数的关系
贝叶斯后验均值估计的最基本特性是伸缩性(shrinkage)。
- 当似然函数的精度h0较大时, 后验均值主要受样本均值支配; 相反,
- 当先验精度h1较大时, 后验均值主要受先验均值支配。
这就是为什么贝叶斯估计通常取先验精度较低的原因(方差给得较大),
也可以看出贝叶斯估计在调整先验精度下可以达到经典估计的效果,从某种意义上说经典估计是贝叶斯估计的特殊形式。
通过两种精度的调整达到对后验均值的估计叫做伸缩性估计特性, 所有贝叶斯估计的均值都具有伸缩性估计这个特性。
最后,推荐一篇至少题目看上去很牛的文章:

官方:http://www.openbugs.net/Manuals/InferenceMenu.html
民间1:http://www.biostat.jhsph.edu/~fdominic/teaching/bio656/labs/labs08/Lab8.IntroWinBUGS.pdf
民间2:http://www.stats.ox.ac.uk/~cholmes/Courses/BDA/Winbugs/winbugs-help.pdf
民间的更好,详细,良心作品。
收敛性检验:
• For models with many parameters, it is inpractical to check convergence for every parameter, so just chose a random selection of relevant parameters to monitor
一个一个地检查。
– For example, rather than checking convergence for every element of a vector of random effects, just chose a random subset (say, the first 5 or 10).
• Examine trace plots of the sample values versus iteration to look for evidence of when the simulation appears to have stabilised: (查看是否有稳定的迹象)
– To obtain ’live’ trace plots for a parameter:
∗ Select Samples from the Inference menu.
∗ Type the name of the parameter in the white box marked node.
∗ Click once with the LMB on the box marked trace: an empty graphics window will appear on screen.
∗ Repeat for each parameter required.
∗ Once you start running the simulations (using the Update Tool, trace plots for these parameters will appear ’live’ in the graphics windows.
– To obtain a trace plot showing the full history of the samples for any parameter for which you have previously set a sample monitor and carried out some updates:
∗ Select Samples from the Inference menu.
∗ Type the name of the parameter in the white box marked node (or select name from pull down list).
∗ Click once with the LMB on the box marked history: a graphics window showing the sample trace will appear.
∗ Repeat for each parameter required.
uniform时,将初始值调高,看明显看出收敛的速度。毕竟在实践当中,我们并不会知道,甚至无法估计参数的大概范围。

以下是model中变量的假设分布换为gaussian分布,收敛快了许多。

[Bayes] openBUGS: this is not the annoying bugs in programming的更多相关文章
- [Math] Hidden Markov Model
链接:https://www.zhihu.com/question/20962240/answer/33438846 霍金曾经说过,你多写一个公式,就会少一半的读者. 还是用最经典的例子,掷骰子. ...
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- [PGM] What is Probabalistic Graphical Models
学术潜规则: 概率图模型提出的意义在于将过去看似零散的topic/model以一种统一的方式串联了起来,它便于从整体上看待这些问题,而非具体解决了某个细节. 举个例子:梯度下降,并非解决神经网络收敛问 ...
- [Scikit-learn] Dynamic Bayesian Network - Kalman Filter
看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html SciPy Cookbook:http ...
- 科学计算软件——Octave安装
Octave是一个旨在提供与Matlab语法兼容的开放源代码科学计算及数值分析的工具,是Matlab商业软件的一个强有力的竞争产品. 参考:[ML:Octave Installation] Gener ...
- [Django] Setting up Django Development Environment in Ubuntu 14.04
1. Python Of course you will need Python. Still Python 2.7 is preferred, however if you would like t ...
- Core Java Volume I — 3.5. Operators
3.5. OperatorsThe usual arithmetic operators +, -, *, / are used in Java for addition, subtraction, ...
- 转:PHP – Best Practises
原文来自于:http://thisinterestsme.com/php-best-practises/ There are a number of good practises that you s ...
- Delphi资源大全
A curated list of awesome Delphi frameworks, libraries, resources, and shiny things. Inspired by awe ...
随机推荐
- 如何调整eclipse中代码字体大小
找到windows--->preferences---->General------>Appearance---->color and fonts ---->ba ...
- CocosCreator内置函数实现物体拖动
通过CocosCreator由内置的cc.Node.EventType.MOUSE_MOVE鼠标(触摸)事件实现,返回参数为鼠标的坐标值. 根据鼠标的x,y实现物体的移动,即将鼠标放置在该节点上,实现 ...
- 2D Tookit简单教程
1. 在Project Window中点击Create > tk2d > Sprite Collection”点击Sprite Collection,创建一个Sprite Collecti ...
- tomcat支持https的server.xml配置
访问地址:https://127.0.0.1/testWeb/mySevlet?url=123&action=aaa server.xml: <?xml version='1.0' en ...
- Linux系统中安装使用百度云网盘
百度云没有Linux客户端,于是有大神用Go语言写出来一个叫BaiduPCS-Go的命令行盘客户端,可以通过终端操作百度云盘,在Linux上实现上传下载.但是因为是命令行版本的,对没有命令行使用基础的 ...
- MySql之查询基础与进阶
转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/8283547.html 一:基本查询 SELECT [DISTINCT] 列1,列2,列3... FROM 表 ...
- 对象拷贝:jQuery extend
今天操作一个Array数组对象,本来想着先取出该数组某一行数据,然后把该数据当作另一份数据进行操作. 结果发现,对该数据操作的同时,也对Array数组进行了修改,因为这个数据指向了array数组对象. ...
- [Python]编码声明:是coding:utf-8还是coding=urf-8呢
推荐: #!/usr/bin/env python3 # -*- coding: utf-8 -*- 我们知道在Python源码的头文件中要声明编码方式,如果你不只是会用到ascii码,很多人都写得都 ...
- PL/SQL出现存储过程注释中文乱码
进入PL/SQL命令行窗口输入:select userenv('language') from dual 查出数据库字符集 输入:select * from V$NLS_PARAMETERS 查出NL ...
- gdb 拾遗
1,跳过某个特定信号 (gdb) handle SIGPIPE nostop noprint pass 2,break在特定的系统调用处 (gdb) catch syscall 3 3,遇到一个断点的 ...