hive GenericUDF1
和UDF相比,通用GDF(GenericUDF)支持复杂类型(比如List,struct等)的输入和输出。
下面来看一个小示例。
Hive中whereme表中包含若干人的行程如下:
- A 2013-10-10 8:00:00 home
- A 2013-10-10 10:00:00 Super Market
- A 2013-10-10 12:00:00 KFC
- A 2013-10-10 15:00:00 school
- A 2013-10-10 20:00:00 home
- A 2013-10-15 8:00:00 home
- A 2013-10-15 10:00:00 park
- A 2013-10-15 12:00:00 home
- A 2013-10-15 15:30:00 bank
- A 2013-10-15 19:00:00 home
通过查询我们要得到如下结果:
- A 2013-10-10 08:00:00 home 10:00:00 Super Market
- A 2013-10-10 10:00:00 Super Market 12:00:00 KFC
- A 2013-10-10 12:00:00 KFC 15:00:00 school
- A 2013-10-10 15:00:00 school 20:00:00 home
- A 2013-10-15 08:00:00 home 10:00:00 park
- A 2013-10-15 10:00:00 park 12:00:00 home
- A 2013-10-15 12:00:00 home 15:30:00 bank
- A 2013-10-15 15:30:00 bank 19:00:00 home
1.编写GenericUDF.
- package com.wz.udf;
- import org.apache.hadoop.io.Text;
- import org.apache.hadoop.io.LongWritable;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.FloatWritable;
- import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
- import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
- import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
- import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
- import org.apache.hadoop.hive.ql.metadata.HiveException;
- import org.apache.hadoop.hive.serde2.lazy.LazyString;
- import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector.Category;
- import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.StandardListObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
- import org.apache.hadoop.hive.serde2.objectinspector.StructField;
- import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
- import org.apache.hadoop.hive.serde2.objectinspector.primitive.LongObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.primitive.IntObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.primitive.FloatObjectInspector;
- import org.apache.hadoop.hive.serde2.objectinspector.primitive.StringObjectInspector;
- import java.text.DateFormat;
- import java.text.SimpleDateFormat;
- import java.util.Date;
- import java.util.Calendar;
- import java.util.ArrayList;
- public class helloGenericUDF extends GenericUDF {
- ////输入变量定义
- private ObjectInspector peopleObj;
- private ObjectInspector timeObj;
- private ObjectInspector placeObj;
- //之前记录保存
- String strPreTime = "";
- String strPrePlace = "";
- String strPrePeople = "";
- @Override
- //1.确认输入类型是否正确
- //2.输出类型的定义
- public ObjectInspector initialize(ObjectInspector[] arguments) throws UDFArgumentException {
- peopleObj = (ObjectInspector)arguments[0];
- timeObj = (ObjectInspector)arguments[1];
- placeObj = (ObjectInspector)arguments[2];
- //输出结构体定义
- ArrayList structFieldNames = new ArrayList();
- ArrayList structFieldObjectInspectors = new ArrayList();
- structFieldNames.add("people");
- structFieldNames.add("day");
- structFieldNames.add("from_time");
- structFieldNames.add("from_place");
- structFieldNames.add("to_time");
- structFieldNames.add("to_place");
- structFieldObjectInspectors.add( PrimitiveObjectInspectorFactory.writableStringObjectInspector );
- structFieldObjectInspectors.add( PrimitiveObjectInspectorFactory.writableStringObjectInspector );
- structFieldObjectInspectors.add( PrimitiveObjectInspectorFactory.writableStringObjectInspector );
- structFieldObjectInspectors.add( PrimitiveObjectInspectorFactory.writableStringObjectInspector );
- structFieldObjectInspectors.add( PrimitiveObjectInspectorFactory.writableStringObjectInspector );
- structFieldObjectInspectors.add( PrimitiveObjectInspectorFactory.writableStringObjectInspector );
- StructObjectInspector si2;
- si2 = ObjectInspectorFactory.getStandardStructObjectInspector(structFieldNames, structFieldObjectInspectors);
- return si2;
- }
- //遍历每条记录
- @Override
- public Object evaluate(DeferredObject[] arguments) throws HiveException{
- LazyString LPeople = (LazyString)(arguments[0].get());
- String strPeople = ((StringObjectInspector)peopleObj).getPrimitiveJavaObject( LPeople );
- LazyString LTime = (LazyString)(arguments[1].get());
- String strTime = ((StringObjectInspector)timeObj).getPrimitiveJavaObject( LTime );
- LazyString LPlace = (LazyString)(arguments[2].get());
- String strPlace = ((StringObjectInspector)placeObj).getPrimitiveJavaObject( LPlace );
- Object[] e;
- e = new Object[6];
- try
- {
- //如果是同一个人,同一天
- if(strPrePeople.equals(strPeople) && IsSameDay(strTime) )
- {
- e[0] = new Text(strPeople);
- e[1] = new Text(GetYearMonthDay(strTime));
- e[2] = new Text(GetTime(strPreTime));
- e[3] = new Text(strPrePlace);
- e[4] = new Text(GetTime(strTime));
- e[5] = new Text(strPlace);
- }
- else
- {
- e[0] = new Text(strPeople);
- e[1] = new Text(GetYearMonthDay(strTime));
- e[2] = new Text("null");
- e[3] = new Text("null");
- e[4] = new Text(GetTime(strTime));
- e[5] = new Text(strPlace);
- }
- }
- catch(java.text.ParseException ex)
- {
- }
- strPrePeople = new String(strPeople);
- strPreTime= new String(strTime);
- strPrePlace = new String(strPlace);
- return e;
- }
- @Override
- public String getDisplayString(String[] children) {
- assert( children.length>0 );
- StringBuilder sb = new StringBuilder();
- sb.append("helloGenericUDF(");
- sb.append(children[0]);
- sb.append(")");
- return sb.toString();
- }
- //比较相邻两个时间段是否在同一天
- private boolean IsSameDay(String strTime) throws java.text.ParseException{
- if(strPreTime.isEmpty()){
- return false;
- }
- String curDay = GetYearMonthDay(strTime);
- String preDay = GetYearMonthDay(strPreTime);
- return curDay.equals(preDay);
- }
- //获取年月日
- private String GetYearMonthDay(String strTime) throws java.text.ParseException{
- DateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
- Date curDate = df.parse(strTime);
- df = new SimpleDateFormat("yyyy-MM-dd");
- return df.format(curDate);
- }
- //获取时间
- private String GetTime(String strTime) throws java.text.ParseException{
- DateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
- Date curDate = df.parse(strTime);
- df = new SimpleDateFormat("HH:mm:ss");
- return df.format(curDate);
- }
- }
2.在Hive里面创建两张表,一张包含结构体的表保存执行GenericUDF查询后的结果,另外一张用于保存最终结果.
- hive> create table whereresult(people string,day string,from_time string,from_place string,to_time string,to_place string);
- OK
- Time taken: 0.287 seconds
- hive> create table tmpResult(info struct<people:string,day:string,from_time:str>ing,from_place:string,to_time:string,to_place:string>);
- OK
- Time taken: 0.074 seconds
3.执行GenericUDF查询,得到最终结果。
- hive> insert overwrite table tmpResult select hellogenericudf(whereme.people,whereme.time,whereme.place) from whereme;
- hive> insert overwrite table whereresult select info.people,info.day,info.from_time,info.from_place,info.to_time,info.to_place from tmpResult where info.from_time<>'null';
- Total MapReduce jobs = 2
- Launching Job 1 out of 2
- Number of reduce tasks is set to 0 since there's no reduce operator
- Starting Job = job_201312022129_0006, Tracking URL = http://localhost:50030/jobdetails.jsp?jobid=job_201312022129_0006
- Kill Command = /home/wangzhun/hadoop/hadoop-0.20.2/bin/../bin/hadoop job -Dmapred.job.tracker=localhost:9001 -kill job_201312022129_0006
- Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
- 2013-12-02 22:48:40,733 Stage-1 map = 0%, reduce = 0%
- 2013-12-02 22:48:49,825 Stage-1 map = 100%, reduce = 0%
- 2013-12-02 22:48:52,869 Stage-1 map = 100%, reduce = 100%
- Ended Job = job_201312022129_0006
- Ended Job = -383357832, job is filtered out (removed at runtime).
- Moving data to: hdfs://localhost:9000/tmp/hive-root/hive_2013-12-02_22-48-24_406_2701579121398466034/-ext-10000
- Loading data to table default.whereresult
- Deleted hdfs://localhost:9000/user/hive/warehouse/whereresult
- Table default.whereresult stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 346, raw_data_size: 0]
- 8 Rows loaded to whereresult
- MapReduce Jobs Launched:
- Job 0: Map: 1 HDFS Read: 420 HDFS Write: 346 SUCESS
- Total MapReduce CPU Time Spent: 0 msec
- OK
- Time taken: 29.098 seconds
- hive> select * from whereresult;
- OK
- A 2013-10-10 08:00:00 home 10:00:00 Super Market
- A 2013-10-10 10:00:00 Super Market 12:00:00 KFC
- A 2013-10-10 12:00:00 KFC 15:00:00 school
- A 2013-10-10 15:00:00 school 20:00:00 home
- A 2013-10-15 08:00:00 home 10:00:00 park
- A 2013-10-15 10:00:00 park 12:00:00 home
- A 2013-10-15 12:00:00 home 15:30:00 bank
- A 2013-10-15 15:30:00 bank 19:00:00 home
- Time taken: 0.105 seconds
hive GenericUDF1的更多相关文章
- 初识Hadoop、Hive
		2016.10.13 20:28 很久没有写随笔了,自打小宝出生后就没有写过新的文章.数次来到博客园,想开始新的学习历程,总是被各种琐事中断.一方面确实是最近的项目工作比较忙,各个集群频繁地上线加多版 ... 
- Hive安装配置指北(含Hive Metastore详解)
		个人主页: http://www.linbingdong.com 本文介绍Hive安装配置的整个过程,包括MySQL.Hive及Metastore的安装配置,并分析了Metastore三种配置方式的区 ... 
- Hive on Spark安装配置详解(都是坑啊)
		个人主页:http://www.linbingdong.com 简书地址:http://www.jianshu.com/p/a7f75b868568 简介 本文主要记录如何安装配置Hive on Sp ... 
- HIVE教程
		完整PDF下载:<HIVE简明教程> 前言 Hive是对于数据仓库进行管理和分析的工具.但是不要被“数据仓库”这个词所吓倒,数据仓库是很复杂的东西,但是如果你会SQL,就会发现Hive是那 ... 
- 基于Ubuntu Hadoop的群集搭建Hive
		Hive是Hadoop生态中的一个重要组成部分,主要用于数据仓库.前面的文章中我们已经搭建好了Hadoop的群集,下面我们在这个群集上再搭建Hive的群集. 1.安装MySQL 1.1安装MySQL ... 
- hive
		Hive Documentation https://cwiki.apache.org/confluence/display/Hive/Home 2016-12-22 14:52:41 ANTLR ... 
- 深入浅出数据仓库中SQL性能优化之Hive篇
		转自:http://www.csdn.net/article/2015-01-13/2823530 一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,R ... 
- Hive读取外表数据时跳过文件行首和行尾
		作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 有时候用hive读取外表数据时,比如csv这种类型的,需要跳过行首或者行尾一些和数据无关的或者自 ... 
- Hive索引功能测试
		作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 从Hive的官方wiki来看,Hive0.7以后增加了一个对表建立index的功能,想试下性能是 ... 
随机推荐
- VSTO:使用C#开发Excel、Word【6】
			Office主互操作程序集(PIA)在了解如何构建Office解决方案之前,您需要更详细地了解在.NET中与Office对象模型通信的托管程序集.用于与Office通话的托管程序集称为Office主互 ... 
- FPGA构造spi时序——AD7176为例(转)
			reference:https://blog.csdn.net/fzhykx/article/details/79490330 项目中用到了一种常见的低速接口(spi),于是整理了一下关于spi相关的 ... 
- 对称加密-java实现
			主要步骤如下: 1.利用SecretKeyFactory.getInstance("加密算法")创建密钥工厂,加密算法如"DES","AES" ... 
- NuGet 程序源包
			https://api.nuget.org/v3/index.json (2018-4-24 10:20:07-最新测试,可以用) https://nuget.cnblogs.com/v3/inde ... 
- shiro学习(二)身份验证
			身份验证,即在应用中谁能证明他就是他本人.一般提供如他们的身份ID一些标识信息来表明他就是他本人,如提供身份证,用户名/密码来证明. 在shiro中,用户需要提供principals (身份)和cre ... 
- oracle sql developer登录
			1 登录Oracle SQL developer 时候要选择数据库连接,这里要区分cdb用户和pdb用户,cdb用户可以在cdb和pdb服务下登录,而pdb用户只能在pdb服务里面登录.比如sys用户 ... 
- lvs的FULLNAT
- ChinaCock界面控件介绍-TCCImageViewerForm
			有多个图片,左右滑动可以切换,通过手势还可以放大.缩小查看,象常见的相册,就是这样子实现效果. 现在,我们有了TCCImageViewerForm组件,也可以轻松实现这样的场景应用. 现在看看TCCI ... 
- ES6  let和const 的相同点与区别
			相同点: 1. 一旦声明 值不能再改变,即不能重复声明. 2.不存在变量提升. 3.都存在暂时性死区. 不同点: 1.const声明的变量不得改变值,这意味着,const一旦声明变量,就必须立即初始化 ... 
- Notepad++同一窗口显示左右显示两份文档
			Notepad++同一窗口显示左右显示两份文档 直接打开一份文档,test1.txt 再打开第二份文档,test2.txt,会显示成这样: 两份文档是以标签的形式展示的,有时需要同时查看两份文档, ... 
