查看网络结构:

(1)利用caffe自带的Python,可以将*.prototxt保存为一张图片,

sudo  python python/draw_net.py  *.prototxt  *.png  --rankdir=BT(或者,TB,LR,RL)

(2)利用Netscope,可以生成网络结构,并带有详细信息,

http://ethereon.github.io/netscope/quickstart.html

http://ethereon.github.io/netscope/#/editor

随机初始化训练:

./build/tools/caffe train --solver=models/bvlc_reference_caffenet/solver.prototxt --gpu=-0,1

微调:

./build/tools/caffe train --solver=models/bvlc_reference_caffenet/solver.prototxt --weights=models/bvlc_reference_caffenet/caffenet_train_iter_10000.caffemodel--gpu=-0,1

从中断处继续训练:

./build/tools/caffe train --solver=models/bvlc_reference_caffenet/solver.prototxt --snapshot=models/bvlc_reference_caffenet/caffenet_train_iter_10000.solverstate

统计在验证集(validation set)上的得分:

./build/tools/caffe test --model= models/bvlc_reference_caffenet/caffenet_train_iter_10000.prototxt--weights= models/bvlc_reference_caffenet/caffenet_train_iter_10000.caffemodel--gpu=0 --iterations=10000

统计训练时间:

# 在 CPU上, 10000iterations训练 caffenet的时间
./build/tools/caffe time --model= models/bvlc_reference_caffenet/caffenet_train_test.prototxt--iterations=10000
# 在 GPU上,默认的 50 iterations训练 caffenet的时间
./build/tools/caffe time --model= models/bvlc_reference_caffenet/caffenet_train_test.prototxt--gpu=0
# 在第一块 GPU上, 10000 iterations训练已给定权值的网络结构的时间
./build/tools/caffe time --model= models/bvlc_reference_caffenet/caffenet_train_test.prototxt--weights= models/bvlc_reference_caffenet/caffenet_train_iter_10000.caffemodel--gpu=0 --iterations=10000

查询GPU显卡参数信息:

# 查询第一块 GPU

./build/tools/caffe device_query --gpu=0

输出训练log日志到txt:

(1)GLOG_logtostderr=0 GLOG_log_dir=./Log/ ./build/tools /caffe  train  --solver=./deepid_solver.prototxt

(2) ./build/tools/caffe train --solver=./deepid_solver.prototxt  >&log.txt&

解析日志:

会在当前文件夹下生成一个.train文件和一个.test文件

./TOOLS/extra/parse_log.sh  *.log

生成曲线图:

./tools/extra/plot_training_log.py.example  0  *.png *.log

Notes:

1. Supporting multiple logs.

2. Log file name must end with the lower-cased ".log".

Supported chart types:

0: Test accuracy  vs. Iters

1: Test accuracy  vs. Seconds

2: Test loss  vs. Iters

3: Test loss  vs. Seconds

4: Train learning rate  vs. Iters

5: Train learning rate  vs.Seconds

6: Train loss  vs. Iters

7: Train loss  vs. Seconds

计算训练数据均值:

# sudo build/tools/compute_image_mean  examples/mnist/mnist_train_lmdbexamples/mnist/mean.binaryproto

生成训练数据的LMDB文件:

convert_imageset  [FLAGS]  ROOTFOLDER/  LISTFILE DB_NAME

FLAGS:

--gray: 是否以灰度图的方式打开图片。程序调用OpenCV库中的imread()函数来打开图片,默认为false

--shuffle: 是否随机打乱图片顺序。默认为false

--backend:需要转换成的db文件格式,可选为leveldb或lmdb,默认为lmdb

--resize_width/resize_height: 改变图片的大小。在运行中,要求所有图片的尺寸一致,因此需要改变图片大小。程序调用opencv库的resize()函数来对图片放大缩小,默认为0,不改变

--check_size: 检查所有的数据是否有相同的尺寸。默认为false,不检查

--encoded: 是否将原图片编码放入最终的数据中,默认为false

--encode_type: 与前一个参数对应,将图片编码为哪一个格式:‘png','jpg'......

ROOTFOLDER:

图片的绝对路径

LISTFILE:

图片txt文件,格式为.txt,内容为,图片  标签

DB_NAME:

保存的文件名

build/tools/convert_imageset --shuffle --resize_height=256 --resize_width=256 /home/xxx/caffe/examples/images/ ./train.txt  ./img_train_lmdb

matlab写caffe程序注意事项:

由于matlab的长宽和c++中opencv的长宽正好相反,同时matlab中是rgb通道,opencv中是bgr通道,因此,程序需要做这么2个变换。这里给出2种处理方式,

(1)直接调用caffe接口,

im_data =caffe.io.load_image('./examples/images/cat.jpg');

(2)用matlab函数自己实现,

im_data = imread('./examples/images/cat.jpg');% read image
im_data = im_data(:, :, [3, 2, 1]); % 从 RGB转换为 BGR
im_data = permute(im_data, [2, 1, 3]); % 改变 width与 height位置
im_data = single(im_data); % 转换为单精度

caffe模型转tensorflow工具:

https://github.com/ethereon/caffe-tensorflow

手动标注图像,生成VOC支持的XML文件工具:

https://github.com/tzutalin/labelImg

matlab将caffe模型weights中不需要的部分去掉:

去掉模型的最后一个全连接层参数,减少模型的大小,适用于只提取特征而不进行分类的开集合场景应用。

net = caffe.NET('XX_deploy.prototxt', 'XX.caffemodel', 'test');

net.save('XX_remove_the_last_fc.caffemodel');

caffe操作技巧的更多相关文章

  1. 用Excel做出比肩任务管理软件的操作技巧

    用Excel做出比肩任务管理软件的操作技巧 在项目管理中,网上有各种各样的工具可以选择,到底用哪个,曾一度困扰着我.我是一个有轻度强迫症的人,总是喜欢试用各种各样的系统,以比较他们之间的不同,试图选择 ...

  2. Jquery数组操作技巧

    Jquery对数组的操作技巧. 1. $.each(array, [callback]) 遍历[常用]  解释: 不同于例遍 jQuery 对象的 $.each() 方法,此方法可用于例遍任何对象(不 ...

  3. Vi操作技巧

    Vi操作技巧: :nu    显示当前所在行的行号 :set nu    显示全部行号 :set nonu        取消显示行号 /字符串    查询字符串,按n查询下一个,按N查询上一个 持续 ...

  4. vim常用操作技巧与配置

    vi是linux与unix下的常用文本编辑器,其运行稳定,使用方便,本文将分两部分对其常用操作技巧和配置进行阐述,其中参考了网上的一些文章,对作者表示感谢 PART1 操作技巧 说明: 以下的例子中  ...

  5. [eclipse] 三个操作技巧

    [eclipse] 三个操作技巧 1.快捷键Ctrl+Shift+i:Debug调试中直接获取方法的返回值 在下图代码中,想知道getHost(),则在调试时运行完该句代码后,选中"urlU ...

  6. eclipse 终极操作技巧

    eclipse作为一个java开发必备软件,从用户体验来说,还是蛮一般的(按照初始设置的话),所以有必要进行一些设置上的改良,加上对一些好用的快捷键的挖掘,能让你用eclipse更加得心应手,事半功倍 ...

  7. 第八章 Hibernate数据操作技巧

    第八章   Hibernate数据操作技巧8.1 分组统计数据    语法:[select]... from ...[where] [group by...[having...]] [order by ...

  8. 转:Mac操作技巧 | "键盘侠"必备快捷键

    看到一篇网友整理的比较好的“Mac操作技巧 | "键盘侠"必备快捷键”,转载过来分享给大家!希望能有帮助. 更多专题,可关注小编[磨人的小妖精],查看我的文章,也可上[风云社区 S ...

  9. PDF文件转换成Excel表格的操作技巧

    我们都知道2007以上版本的Office文档,是可以直接将文档转存为PDF格式文档的.那么反过来,PDF文档可以转换成其他格式的文档吗?这是大家都比较好奇的话题.如果可以以其他格式进行保存,就可以极大 ...

随机推荐

  1. Anaconda 简单介绍 -- 环境管理

    前面介绍了 Anaconda 的安装,接下来介绍一下 简单使用,后续并实时更新. 常用操作命令: 环境操作 1.查看环境管理的全部命令帮助: conda env -h 2.查看当前系统下的环境: co ...

  2. Run keyword if

    Wait For Page Ready ${a} Run Keyword And Return Status Page Should Contain 新建 log ${a} Run Keyword I ...

  3. SpringBoot集成ActiveMQ

    前面提到了原生API访问ActiveMQ和Spring集成ActiveMQ.今天讲一下SpringBoot集成ActiveMQ.SpringBoot就是为了解决我们的Maven配置烦恼而生,因此使用S ...

  4. VIM编辑器和VI编辑器的区别

    vi 和vim 的区别 写在前面:这个两个"东西"着实让我烦恼一阵子,但是自己一直没当回事,但是遇到了好几次再决定彻底把他们搞的明白,一下是我通过查找资料了解到的关于这两个编辑器的 ...

  5. python实战小程序之购物车

    # Author:南邮吴亦凡 # 商品列表 product_list = [ ('Iphone',5800), # 逗号一定不可以省略! ('Mac',4800), ('smartphone',400 ...

  6. windows10 64bit 下的tensorflow 安装及demo

    目前流行的深度学习库有Caffe,Keras,Theano,本文采用谷歌开源的曾用来制作AlphaGo的深度学习系统Tensorflow. 1:安装Tensorflow 最早TensorFlow只支持 ...

  7. 比较Class.getResource与Class.getClassLoader().getResource两种方式读取资源文件

    /** * @author zhangboqing * @date 2018/7/10 */ public class FileDemo { public static void main(Strin ...

  8. ZCU板级调试Bug记录

    本帖用以记录在ZCU102板级调试间遇到的Bug. 1.PL端的AXI总线在读取DDR中的数据的时候,在一个burst内不能跨越page boundary.跨越page boundary会在该burs ...

  9. session一二事

    Session即回话,指一种持续性的.双向的连接.Session和Cookie在本质上没有什么区别,都是针对HTTP协议的局限性而提出的一种保持客户端和服务器间保持会话连接状态的机制. Session ...

  10. JS onclick事件获取空间value

    1. HTML onclick = btnAction(this.value) 2. JS btnAction(v){ alert(v) }