题意:给一个数组s,求\(f(s_a | s_b) * f(s_c) * f(s_d \oplus s_e)\),f是斐波那契数列,而且要满足\(s_a\&s_b==0\),\((s_a | s_b)\&s_c\&(s_d \oplus s_e)=2^{i}\)

题解:先求\(A_k=f(k)*\sum_{i|j==k\&\&i\&j==0}s_a*s_b\),明显是个子集卷积,在求出\(B_k=f(k)*s_k\),\(C_k=f(k)*\sum_{i \oplus j==k}s_i*s_j\),C明显是个xor卷积,fwt即可.

最后是\(D_l=\sum_{i\&j\&k==l}A_i*B_j*C_k\),D明显是个and卷积,还是fwt.答案就是\(\sum D(2^{i})\)

子集卷积可以枚举子集在\(O(3^{17})\)时间算出来.也可以通过fmt求出,dp[i][j]表示集合大小为i的j集合答案.对dp[i]单独fmt,时间复杂度\(O(17^{2}*2^{17})\)

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=(1<<17)+10,maxn=1000000+10,inf=0x3f3f3f3f; int a[N],b[N],c[N],d[20][N],dp[20][N],f[N];
int inv2=qp(2,mod-2);
void fwt_or(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
if(dft==1)a[i+k]=(a[i+k]+a[k])%mod;
else a[i+k]=(a[i+k]-a[k]+mod)%mod;
}
} void fwt_and(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
if(dft==1)a[k]=(a[k]+a[i+k])%mod;
else a[k]=(a[k]-a[i+k]+mod)%mod;
}
}
void fwt_xor(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
int x=a[k],y=a[i+k];
a[k]=(x+y)%mod;a[i+k]=(x-y+mod)%mod;
if(dft==-1)a[k]=1ll*a[k]*inv2%mod,a[i+k]=1ll*a[i+k]*inv2%mod;
}
}
int main()
{
f[0]=0,f[1]=1;
for(int i=2;i<N;i++)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>=mod)f[i]-=mod;
}
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;scanf("%d",&x);
a[x]++,c[x]++;
}
for(int i=0;i<(1<<17);i++)d[__builtin_popcount(i)][i]=a[i];
for(int i=0;i<=17;i++)fwt_or(d[i],(1<<17),1);
for(int i=0;i<=17;i++)for(int j=0;j<=i;j++)
for(int k=0;k<(1<<17);k++)
{
dp[i][k]+=1ll*d[j][k]*d[i-j][k]%mod;
if(dp[i][k]>=mod)dp[i][k]-=mod;
}
for(int i=0;i<=17;i++)fwt_or(dp[i],(1<<17),-1);
for(int i=0;i<(1<<17);i++)b[i]=dp[__builtin_popcount(i)][i];
fwt_xor(c,(1<<17),1);
for(int i=0;i<(1<<17);i++)c[i]=1ll*c[i]*c[i]%mod;
fwt_xor(c,(1<<17),-1);
for(int i=0;i<(1<<17);i++)
{
a[i]=1ll*a[i]*f[i]%mod;
b[i]=1ll*b[i]*f[i]%mod;
c[i]=1ll*c[i]*f[i]%mod;
}
fwt_and(a,(1<<17),1);fwt_and(b,(1<<17),1);fwt_and(c,(1<<17),1);
for(int i=0;i<(1<<17);i++)a[i]=1ll*a[i]*b[i]%mod*c[i]%mod;
fwt_and(a,(1<<17),-1);
int ans=0;
for(int i=0;i<17;i++)
{
ans+=a[1<<i];
if(ans>=mod)ans-=mod;
}
printf("%d\n",ans);
return 0;
}
/******************** ********************/

Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  3. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  4. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  5. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  6. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  7. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  8. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

  9. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

随机推荐

  1. What are the differences between Flyweight and Object Pool patterns?

    What are the differences between Flyweight and Object Pool patterns? They differ in the way they are ...

  2. centos 查看USB接口的版本

    # lsusbBus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hubBus 002 Device 001: ID 1d6b:000 ...

  3. 案例:8,64,256都是2的阶次方数(8是2的3次方),用Java编写程序来判断一个整数是不是2的阶次方数。

     如果一个数是2的阶次方数,则它的二进制数的首位一般是1,后面全为0.比如8:1000,64:1000000,如果将这个数减1后再作与&运算,则应该全为0,(x&(x-1)==0&am ...

  4. 解决Maven管理项目update Maven时,jre自动变为1.5

    本文为博主原创,未经允许不得转载: 在搭建一个maven web项目时,项目已经按步骤搭建完好,之后项目上就报了一个错误. 在控制台看到错误提示如下:Dynamic Web Module 3.0 re ...

  5. 如何在 sublime text 中以当前文件目录打开 cmd

    需求描述 sublime 固定可以自己设置和添加新的编译环境,比如在我们写 js 的时候可能会添加 node 来对 js 文件进行运行.但是,这样做的结果是,我们只能看到运行结果.有时候还希望能做些其 ...

  6. 《机器学习实战》之k-近邻算法(示例)

    看了这本书的第一个算法—k-近邻算法,这个算法总体构造思想是比较简单的,在ACM当中的话就对应了kd树这种结构.首先需要给定训练集,然后给出测试数据,求出训练集中与测试数据最相近的k个数据,根据这k个 ...

  7. 【Python】【socket】

    [server.py] """#练习1import socketimport threading sock = socket.socket()sock.bind(('12 ...

  8. linux中日历命令显示

    cal 显示当前月的日历 cal 年份 显示特定一年的年历 [jasmine.qian@]$ cal January 2019 Su Mo Tu We Th Fr Sa 1 2 3 4 5 6 7 8 ...

  9. JavaSE习题 第八章 线程

    问答题 1.线程和进程是什么关系? 进程是程序的一次动态执行,对应了从代码加载,执行至执行完毕的一个完整的过程 线程是比进程更小的执行单位,一个进程在其执行过程中可以产生多个线程,形成多条执行线索 2 ...

  10. Qt532,鼠标键盘事件_ZC

    1.判断鼠标左键是否是 按下的状态 void TdrWebview::mouseMoveEvent(QMouseEvent *_pEvent) { if (_pEvent->buttons() ...