Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci
题意:给一个数组s,求\(f(s_a | s_b) * f(s_c) * f(s_d \oplus s_e)\),f是斐波那契数列,而且要满足\(s_a\&s_b==0\),\((s_a | s_b)\&s_c\&(s_d \oplus s_e)=2^{i}\)
题解:先求\(A_k=f(k)*\sum_{i|j==k\&\&i\&j==0}s_a*s_b\),明显是个子集卷积,在求出\(B_k=f(k)*s_k\),\(C_k=f(k)*\sum_{i \oplus j==k}s_i*s_j\),C明显是个xor卷积,fwt即可.
最后是\(D_l=\sum_{i\&j\&k==l}A_i*B_j*C_k\),D明显是个and卷积,还是fwt.答案就是\(\sum D(2^{i})\)
子集卷积可以枚举子集在\(O(3^{17})\)时间算出来.也可以通过fmt求出,dp[i][j]表示集合大小为i的j集合答案.对dp[i]单独fmt,时间复杂度\(O(17^{2}*2^{17})\)
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=(1<<17)+10,maxn=1000000+10,inf=0x3f3f3f3f;
int a[N],b[N],c[N],d[20][N],dp[20][N],f[N];
int inv2=qp(2,mod-2);
void fwt_or(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
if(dft==1)a[i+k]=(a[i+k]+a[k])%mod;
else a[i+k]=(a[i+k]-a[k]+mod)%mod;
}
}
void fwt_and(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
if(dft==1)a[k]=(a[k]+a[i+k])%mod;
else a[k]=(a[k]-a[i+k]+mod)%mod;
}
}
void fwt_xor(int *a,int n,int dft)
{
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=j;k<j+i;k++)
{
int x=a[k],y=a[i+k];
a[k]=(x+y)%mod;a[i+k]=(x-y+mod)%mod;
if(dft==-1)a[k]=1ll*a[k]*inv2%mod,a[i+k]=1ll*a[i+k]*inv2%mod;
}
}
int main()
{
f[0]=0,f[1]=1;
for(int i=2;i<N;i++)
{
f[i]=f[i-1]+f[i-2];
if(f[i]>=mod)f[i]-=mod;
}
int n;scanf("%d",&n);
for(int i=1;i<=n;i++)
{
int x;scanf("%d",&x);
a[x]++,c[x]++;
}
for(int i=0;i<(1<<17);i++)d[__builtin_popcount(i)][i]=a[i];
for(int i=0;i<=17;i++)fwt_or(d[i],(1<<17),1);
for(int i=0;i<=17;i++)for(int j=0;j<=i;j++)
for(int k=0;k<(1<<17);k++)
{
dp[i][k]+=1ll*d[j][k]*d[i-j][k]%mod;
if(dp[i][k]>=mod)dp[i][k]-=mod;
}
for(int i=0;i<=17;i++)fwt_or(dp[i],(1<<17),-1);
for(int i=0;i<(1<<17);i++)b[i]=dp[__builtin_popcount(i)][i];
fwt_xor(c,(1<<17),1);
for(int i=0;i<(1<<17);i++)c[i]=1ll*c[i]*c[i]%mod;
fwt_xor(c,(1<<17),-1);
for(int i=0;i<(1<<17);i++)
{
a[i]=1ll*a[i]*f[i]%mod;
b[i]=1ll*b[i]*f[i]%mod;
c[i]=1ll*c[i]*f[i]%mod;
}
fwt_and(a,(1<<17),1);fwt_and(b,(1<<17),1);fwt_and(c,(1<<17),1);
for(int i=0;i<(1<<17);i++)a[i]=1ll*a[i]*b[i]%mod*c[i]%mod;
fwt_and(a,(1<<17),-1);
int ans=0;
for(int i=0;i<17;i++)
{
ans+=a[1<<i];
if(ans>=mod)ans-=mod;
}
printf("%d\n",ans);
return 0;
}
/********************
********************/
Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined)G. Sum the Fibonacci的更多相关文章
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship
Problem Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...
- Educational Codeforces Round 43 (Rated for Div. 2)
Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...
- Educational Codeforces Round 35 (Rated for Div. 2)
Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...
- Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes
Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...
- Educational Codeforces Round 63 (Rated for Div. 2) 题解
Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...
- Educational Codeforces Round 39 (Rated for Div. 2) G
Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...
- Educational Codeforces Round 48 (Rated for Div. 2) CD题解
Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...
随机推荐
- powershell的stable和preview版本
在看https://github.com/PowerShell/PowerShell/releases的时候发现,已经发布了6.2.0的preview版本的情况下,还会继续发布6.1.3. 在Read ...
- JS获取节点的兄弟,父级,子级元素
https://blog.csdn.net/duanshuyong/article/details/7562423 先说一下JS的获取方法,其要比JQUERY的方法麻烦很多,后面以JQUERY的方法作 ...
- [bug] - 关于poi导入excel时间格式会减少8小时的问题.
这个bug发生在使用poi组件导入导出excel时,(这里是导入) 首先在excel中的格式设定是 yyyy-mm-dd hh:mm:ss 通过配套使用ExcelUtil中 getCellValue( ...
- Unity3D学习笔记(三十七):顶点偏移和溶解
顶点偏移 沿向量方向偏移,沿自身坐标系方向偏移 沿法线方向偏移,球体放大,立方体拆分 Shader "Lesson/VFVertOffsetVertex" { Properties ...
- Docker 开发最佳实践
Docker development best practices The following development patterns have proven to be helpful for p ...
- 51Nod—1174 区间中最大的数 线段树模版
在大佬们题解的帮助下算是看懂了线段树吧...在这mark下防一手转头就忘. #include<iostream> #include<stdio.h> using namespa ...
- PTA 7-2 符号配对(20 分)
7-2 符号配对(20 分) 请编写程序检查C语言源程序中下列符号是否配对:/*与*/.(与).[与].{与}. 输入格式: 输入为一个C语言源程序.当读到某一行中只有一个句点.和一个回车的时候,标志 ...
- animate.css –齐全的CSS3动画库--- 学习笔记
animate.css – 齐全的CSS3动画库 学习网站: https://daneden.github.io/animate.css/ http://www.dowebok.com/98.html ...
- django 消息框架 message
在网页应用中,我们经常需要在处理完表单或其它类型的用户输入后,显示一个通知信息给用户. 对于这个需求,Django提供了基于Cookie或者会话的消息框架messages,无论是匿名用户还是认证的用户 ...
- STL_string.【转】C++中int、string等常见类型转换
ZC:#include <sstream> ZC:貌似还有 istringstream 和 ostringstream ... https://www.cnblogs.com/gaobw/ ...