LeetCode(52):N皇后 II
Hard!
题目描述:
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

上图为 8 皇后问题的一种解法。
给定一个整数 n,返回 n 皇后不同的解决方案的数量。
示例:
输入: 4
输出: 2
解释: 4 皇后问题存在如下两个不同的解法。
[
[".Q..", // 解法 1
"...Q",
"Q...",
"..Q."], ["..Q.", // 解法 2
"Q...",
"...Q",
".Q.."]
]
解题思路:
这道题是之前那道N-Queens N皇后问题 的延伸,说是延伸其实我觉得两者顺序应该颠倒一下,上一道题比这道题还要稍稍复杂一些,二者本质上没有什么区别,都是要用回溯法Backtracking来解,如果理解了之前那道题的思路,此题只要做很小的改动即可,不再需要求出具体的皇后的摆法,只需要每次生成一种解法时,计数器加一即可。
C++解法一:
class Solution {
public:
int totalNQueens(int n) {
int res = ;
vector<int> pos(n, -);
totalNQueensDFS(pos, , res);
return res;
}
void totalNQueensDFS(vector<int> &pos, int row, int &res) {
int n = pos.size();
if (row == n) ++res;
else {
for (int col = ; col < n; ++col) {
if (isValid(pos, row, col)) {
pos[row] = col;
totalNQueensDFS(pos, row + , res);
pos[row] = -;
}
}
}
}
bool isValid(vector<int> &pos, int row, int col) {
for (int i = ; i < row; ++i) {
if (col == pos[i] || abs(row - i) == abs(col - pos[i])) {
return false;
}
}
return true;
}
};
C++解法二:
class Solution {
private:
int res;
public:
int totalNQueens(int n) {
vector<int> state(n, -);
res = ;
helper(state, );
return res;
}
void helper(vector<int> &state, int row)
{//放置第row行的皇后
int n = state.size();
if(row == n)
{
res++;
return;
}
for(int col = ; col < n; col++)
if(isValid(state, row, col))
{
state[row] = col;
helper(state, row+);
state[row] = -;;
}
}
//判断在row行col列位置放一个皇后,是否是合法的状态
//已经保证了每行一个皇后,只需要判断列是否合法以及对角线是否合法。
bool isValid(vector<int> &state, int row, int col)
{
for(int i = ; i < row; i++)//只需要判断row前面的行,因为后面的行还没有放置
if(state[i] == col || abs(row - i) == abs(col - state[i]))
return false;
return true;
}
};
LeetCode(52):N皇后 II的更多相关文章
- Java实现 LeetCode 52 N皇后 II
52. N皇后 II n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回 n 皇后不同的解决方案 ...
- [LeetCode] 52. N皇后 II
题目链接 : https://leetcode-cn.com/problems/n-queens-ii/ 题目描述: n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间 ...
- Leetcode之回溯法专题-52. N皇后 II(N-Queens II)
Leetcode之回溯法专题-52. N皇后 II(N-Queens II) 与51题的代码80%一样,只不过52要求解的数量,51求具体解,点击进入51 class Solution { int a ...
- leetcode 51. N皇后 及 52.N皇后 II
51. N皇后 问题描述 n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后 ...
- leetcode 52 N皇后问题 II
51的简化版,省去根据排列话棋盘的工作,直接计数,代码: class Solution { public: int totalNQueens(int n) { ; vector<); dfs(n ...
- 【LeetCode 】N皇后II
[问题]n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法.给定一个整数 n,返回 n 皇后不同的解决方案的数量. 示例: ...
- 【leetcode-51,52】 N皇后,N皇后 II
N皇后(hard) n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击. 上图为 8 皇后问题的一种解法. 给定一个整数 n,返回所有不同的 n 皇后问题 ...
- LeetCode Single Number I / II / III
[1]LeetCode 136 Single Number 题意:奇数个数,其中除了一个数只出现一次外,其他数都是成对出现,比如1,2,2,3,3...,求出该单个数. 解法:容易想到异或的性质,两个 ...
- [array] leetcode - 40. Combination Sum II - Medium
leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...
- LeetCode 137. Single Number II(只出现一次的数字 II)
LeetCode 137. Single Number II(只出现一次的数字 II)
随机推荐
- 任意输入一串字符串,求该字符串中字符的出现次数并打印出来,如输入“bcaba”输出:b 2 c 1 a 2
前言:其实我还是有点不懂,有点郁闷了,算了直接把代码放上去把. 方法一: Scanner input=new Scanner(System.in); System.out.println(" ...
- Ruby 集合数组常用遍历方法
迭代器简介 先简单介绍一下迭代器. 1.一个Ruby迭代器就是一个简单的能接收代码块的方法(比如each这个方法就是一个迭代器).特征:如果一个方法里包含了yield调用,那这个方法肯定是迭代器: 2 ...
- 使用ajax实现form表单的submit事件
需求:如题,需要在登录页面使用ajax提交请求,并在本页面返回请求信息. 主要部分jS如下: //提交表单$("#loginForm").submit(function(){ va ...
- minio上传大于30M文件失败
minio上传30M文件失败.提示失败或者进度不动.翻查手册发现并未限速.原因是使用了nginx做代理.上传超过30M大的客户端文件无法正常上传,修改了下nginx的配置,就可以了. 加上client ...
- Keil5下载STM32库
1.http://www.keil.com/dd2 2.3.以STM32L051C8为例 下载即可.
- 在html中控制自动换行
其实只要在表格控制中添加一句<td style="word-break:break-all">就搞定了.其中可能对英文换行可能会分开一个单词问题:解决如下:语法: ...
- C语言入门教程-(6)运算符
1.运算符概述 运算符是一种编译器执行特定的数学或逻辑操作的符号.C语言提供了以下类型的运算符: 算术运算符 关系运算符 逻辑运算符 位运算符 赋值运算符 条件运算符 其他运算符 2.算术运算符 算术 ...
- Wannafly挑战赛21 E 未来城市规划
传送门 题目中给的信息很难直接维护,但是可以考虑一条边对答案的贡献 在以\(x\)为根的子树里,如果一条边\(i\)的权值为\(w_i\),这条边深度更深的端点为\(to_i\),那么这条边对这个子树 ...
- python技巧 列表推导
val = [expression for value in collection if condition] 等价于 val = []for value in collection: if c ...
- Fragment add replace 区别
首先获取FragmentTransaction对象:FragmentTransaction transaction = getFragmentManager().beginTransaction(); ...