2243: [SDOI2011]染色

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 7925  Solved: 2975
[Submit][Status][Discuss]

Description

给定一棵有n个节点的无根树和m个操作,操作有2类:

1、将节点a到节点b路径上所有点都染成颜色c;

2、询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”、“222”和“1”。

请你写一个程序依次完成这m个操作。

Input

第一行包含2个整数n和m,分别表示节点数和操作数;

第二行包含n个正整数表示n个节点的初始颜色

下面 行每行包含两个整数x和y,表示xy之间有一条无向边。

下面 行每行描述一个操作:

“C a b c”表示这是一个染色操作,把节点a到节点b路径上所有点(包括a和b)都染成颜色c;

“Q a b”表示这是一个询问操作,询问节点a到节点b(包括a和b)路径上的颜色段数量。

Output

对于每个询问操作,输出一行答案。

Sample Input

6 5

2 2 1 2 1 1

1 2

1 3

2 4

2 5

2 6

Q 3 5

C 2 1 1

Q 3 5

C 5 1 2

Q 3 5

Sample Output

3

1

2

HINT

数N<=10^5,操作数M<=10^5,所有的颜色C为整数且在[0, 10^9]之间。

Source

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-8
#define bug(x) cout<<"bug"<<x<<endl;
const int N=3e5+,M=2e6+,inf=1e9+;
const LL INF=1e18+,mod=1e9+; struct edge
{
int v,next;
} edge[N<<];
int head[N<<],edg,id,n;
/// 树链剖分 int fa[N],dep[N],son[N],siz[N]; // fa父亲,dep深度,son重儿子,siz以该点为子树的节点个数
int a[N],ran[N],top[N],tid[N]; // tid表示边的标号,top通过重边可以到达最上面的点,ran表示标记tid
void init()
{
memset(son,-,sizeof(son));
memset(head,-,sizeof(head));
edg=;
id=;
} void add(int u,int v)
{
edg++;
edge[edg].v=v;
edge[edg].next=head[u];
head[u]=edg;
} void dfs1(int u,int fath,int deep)
{
fa[u]=fath;
siz[u]=;
dep[u]=deep;
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fath)continue;
dfs1(v,u,deep+);
siz[u]+=siz[v];
if(son[u]==-||siz[v]>siz[son[u]])
son[u]=v;
}
} void dfs2(int u,int tp)
{
tid[u]=++id;
top[u]=tp;
ran[tid[u]]=u;
if(son[u]==-)return;
dfs2(son[u],tp);
for(int i=head[u]; i!=-; i=edge[i].next)
{
int v=edge[i].v;
if(v==fa[u])continue;
if(v!=son[u])
dfs2(v,v);
}
} struct SGT
{
int la[N<<],ra[N<<],ma[N<<],lazy[N<<];
void pushup(int pos)
{
if(ra[pos<<]==la[pos<<|])ma[pos]=ma[pos<<]+ma[pos<<|]-;
else ma[pos]=ma[pos<<|]+ma[pos<<];
la[pos]=la[pos<<];
ra[pos]=ra[pos<<|];
}
void pushdown(int pos)
{
if(lazy[pos])
{
la[pos<<]=la[pos<<|]=lazy[pos];
ra[pos<<]=ra[pos<<|]=lazy[pos];
ma[pos<<]=ma[pos<<|]=;
lazy[pos<<]=lazy[pos<<|]=lazy[pos];
lazy[pos]=;
}
}
pair<int,pair<int,int> > Union( pair<int,pair<int,int> > a, pair<int,pair<int,int> > b)
{
if(a.second.second==b.second.first)
return make_pair(a.first+b.first-,make_pair(a.second.first,b.second.second));
return make_pair(a.first+b.first,make_pair(a.second.first,b.second.second));
}
void build(int l,int r,int pos)
{
lazy[pos]=;
if(l==r)
{
la[pos]=ra[pos]=a[ran[l]];
ma[pos]=;
return;
}
int mid=(l+r)>>;
build(l,mid,pos<<);
build(mid+,r,pos<<|);
pushup(pos);
}
void update(int L,int R,int c,int l,int r,int pos)
{
if(L<=l&&r<=R)
{
lazy[pos]=c;
la[pos]=ra[pos]=c;
ma[pos]=;
return;
}
pushdown(pos);
int mid=(l+r)>>;
if(L<=mid)update(L,R,c,l,mid,pos<<);
if(R>mid)update(L,R,c,mid+,r,pos<<|);
pushup(pos);
}
pair<int,pair<int,int> > query(int L,int R,int l,int r,int pos)
{
if(L<=l&&r<=R)
return make_pair(ma[pos],make_pair(la[pos],ra[pos]));
pushdown(pos);
int mid=(l+r)>>;
if(L>mid)return query(L,R,mid+,r,pos<<|);
else if(R<=mid)return query(L,R,l,mid,pos<<);
else
{
pair<int,pair<int,int> > a=query(L,mid,l,mid,pos<<);
pair<int,pair<int,int> > b=query(mid+,R,mid+,r,pos<<|);
return Union(a,b);
}
}
}tree; int lca(int l,int r)
{
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r);
l=fa[top[l]];
}
if(dep[l]<dep[r])swap(l,r);
return r;
}
int up(int l,int r)
{
int pre=-,ans=;
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r);
pair<int,pair<int,int> > x=tree.query(tid[top[l]],tid[l],,n,);
//cout<<tid[top[l]]<<" "<<tid[l]<<" "<<x.first<<endl;
ans+=x.first;
if(pre==x.second.second)ans--;
pre=x.second.first;
l=fa[top[l]];
}
if(dep[l]<dep[r])swap(l,r);
pair<int,pair<int,int> > x=tree.query(tid[r],tid[l],,n,);
//cout<<tid[r]<<" "<<tid[l]<<" "<<x.first<<endl;
ans+=x.first;
if(pre==x.second.second)ans--;
return ans;
}
void go(int l,int r,int c)
{
while(top[l]!=top[r])
{
if(dep[top[l]]<dep[top[r]])swap(l,r);
tree.update(tid[top[l]],tid[l],c,,n,);
l=fa[top[l]];
}
if(dep[l]<dep[r])swap(l,r);
tree.update(tid[r],tid[l],c,,n,);
}
char ch[];
int main()
{
init();
int q;
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs1(,-,);
dfs2(,);
tree.build(,n,);
while(q--)
{
int u,v;
scanf("%s%d%d",ch,&u,&v);
if(ch[]=='C')
{
int c;
scanf("%d",&c);
go(u,v,c);
}
else
{
int x=lca(u,v);
printf("%d\n",up(u,x)+up(v,x)-);
}
}
return ;
}

bzoj 2243: [SDOI2011]染色 线段树区间合并+树链剖分的更多相关文章

  1. bzoj 2243: [SDOI2011]染色 (树链剖分+线段树 区间合并)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 9854  Solved: 3725[Submit][Status ...

  2. BZOJ 2243: [SDOI2011]染色 树链剖分+线段树区间合并

    2243: [SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数 ...

  3. bzoj 2243 [SDOI2011]染色(树链剖分,线段树)

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 4637  Solved: 1726[Submit][Status ...

  4. BZOJ 2243: [SDOI2011]染色 树链剖分 倍增lca 线段树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  5. BZOJ 2243: [SDOI2011]染色 [树链剖分]

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6651  Solved: 2432[Submit][Status ...

  6. Bzoj 2243: [SDOI2011]染色 树链剖分,LCT,动态树

    2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 5020  Solved: 1872[Submit][Status ...

  7. bzoj 2243 [SDOI2011]染色(树链剖分+线段树合并)

    [bzoj2243][SDOI2011]染色 2017年10月20日 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询 ...

  8. BZOJ 2243 [SDOI2011]染色 (树链剖分)(线段树区间修改)

    [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6870  Solved: 2546[Submit][Status][Disc ...

  9. BZOJ 2243: [SDOI2011]染色 (树链剖分+线段树合并)

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2243 树链剖分的点剖分+线段树.漏了一个小地方,调了一下午...... 还是要细心啊! 结 ...

随机推荐

  1. vue:vuex详解

    一.什么是Vuex? https://vuex.vuejs.org/zh-cn 官方说法:Vuex 是一个专为 Vue.js应用程序开发的状态管理模式.它采用集中式存储管理应用的所有组件的状态,并以相 ...

  2. Python基础(一)_数据类型、条件判断、循环、列表

    编译型语言(中文版)运行代码之前,要先编译.然后再运行编译时间比较长c.c++.c# 解释型语言(翻译版)运行的时候才去编译,运行一次编译.运行效率没有编译型语言快python.ruby.shell. ...

  3. 前端页面报net::ERR_CONNECTION_RESET错误的原因

    本机和测试环境都是OK的.但是一到线上就报错:可能原因总结如下: 1 可能是服务器限制了文件上传的权限. 解决方法:开通了文件上传权限. 2 也许导致这种错误的方式有很多,可能是因为post请求时提交 ...

  4. 垂直打击之JVM剖析

    让Java应用程序运行是一回事,但让他们跑得快就是另外一回事了.在面对对象的环境中,性能问题就像来势凶猛的野兽.但JVM的复杂性将性能调整的复杂程度增加了一个级别.这里Refcard涵盖了JVM in ...

  5. 怎样从外网访问内网Apache HTTP Server

    本地安装了一个Apache HTTP Server,只能在局域网内访问,怎样从外网也能访问到本地的Apache HTTP Server呢?本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

  6. 2017第十三届湖南省省赛B - Simplified Blackjack CSU - 1998

    在一次聚会上,Bob打算和Alice一起玩Blackjack游戏,但Alice平时很少玩扑克类游戏,Bob觉得跟Alice解释清楚Blackjack的规则有点困难,于是Bob决定和Alice玩一次简化 ...

  7. Linux中USB协议栈的框架简介

    文本旨在简单介绍一下Linux中USB协议栈的代码框架: 下图是USB协议栈相关数据结构的关系图: 下面结合上图看一下系统初始化的流程: 1.USB子系统初始化:\drivers\usb\core\u ...

  8. 通过经纬度获取所属城市信息-php

    测试经纬度信息,37.863036,113.598909.通过地图查询,所在城市为:阳泉. <?php class test{ public static $test_key = 'dfgfdg ...

  9. Golang时间函数及测试函数执行时间案例

    package main import ( "fmt" "time" ) func main(){ //[时间获取及格式化] //获取当前时间 now_time ...

  10. [ERROR] InnoDB: Trying to access page number 7 in space 957, space name XXX which is outside the tablespace bounds

    早上,测试说演示环境mysql老实断开重连,一update就挂,经查日志,有如下异常: 2017-04-05T23:13:01.729250+08:00 17065 [ERROR] InnoDB: T ...