爬虫基础知识及scrapy框架使用和基本原理
爬虫
一、异步IO
线程:线程是计算机中工作的最小单元
IO请求(IO密集型)时多线程更好,计算密集型进程并发最好,IO请求不涉及CPU
自定义线程池
进程:进程默认有主线程,可以有多线程共存,并且共享内部资源
自定义进程
协程:使用进程中一个线程去完成多个任务,微线程(伪线程)
GIL:python特有,用于在进程中对线程枷锁,保证同一时刻只能有一个线程被CPU调度
# Author:wylkjj
# Date:2020/2/24
# -*- coding:utf-8 -*-
import requests
# 创建多线程
from concurrent.futures import ThreadPoolExecutor
# 创建多进程
from concurrent.futures import ProcessPoolExecutor
def async_url(url):
try:
response = requests.get(url)
except Exception as e:
print('异常结果', response.url, response.content)
print('获取结果', response.url, response.content)
url_list = [
'http://www.baidu.com',
'http://www.chouti.com',
'http://www.bing.com',
'http://www.google.com',
]
# 线程池pool:创建五个线程,IO请求线程更适合
# GIL线程锁,只针对cpu的调用权限,针对IO请求不会锁住
pool = ThreadPoolExecutor(5)
# 进程池pools:创建五个线程,进程浪费资源
pools = ProcessPoolExecutor(5)
for url in url_list:
print('开始请求:', url)
pool.submit(async_url, url)
pool.shutdown(wait=True)
# 回调函数:.add_done_callback(回调的函数)
异步IO模块:
import asyncio缺点:只提供TCP,提供sleep,不提供http
事件循环:get_event_loop()
@asyncio.coroutine和yield from要同时配套使用,固定写法
异步IO:
- asynico + aiohttp:asynico + request
- gevent + request:gevent + request两个方法组合在一起后出现了一个grequests
- twisted
- tornado:异步非阻塞IO
# Author:wylkjj
# Date:2020/2/24
# -*- coding:utf-8 -*-
# 异步IO模块
import asyncio
@asyncio.coroutine
def func1():
print('before...func1......')
yield from asyncio.sleep(5)
print('end...func1......')
tasks = [func1(), func1()]
loop = asyncio.get_event_loop() # 事件循环
loop.run_until_complete(asyncio.gather(*tasks)) # 把任务作为列表传进来
loop.close()
# Author:wylkjj
# Date:2020/2/25
# -*- coding:utf-8 -*-
import asyncio
@asyncio.coroutine
def fetch_async(host, url='/'):
print(host, url)
reader, writer = yield from asyncio.open_connection(host, 80)
request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
request_header_content = bytes(request_header_content, encoding='utf-8')
writer.write(request_header_content)
yield from writer.drain()
text = yield from reader.read()
print(host, url, str(text, encoding='utf-8'))
writer.close()
tasks = [
fetch_async('www.cnblogs.com', '/eric/'),
fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]
loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
# Author:wylkjj
# Date:2020/2/25
# -*- coding:utf-8 -*-
# 使用aiohttp和asyncio实现http请求 (aiohttp亲)
import aiohttp
import asyncio
@asyncio.coroutine
def fetch_async(url):
print(url)
response = yield from aiohttp.request('GET', url)
# data = yield from response.read()
# print(url, data)
print(url, response)
response.close()
# Author:wylkjj
# Date:2020/2/25
# -*- coding:utf-8 -*-
# asyncio和requests配合使用也可以支持HTTP (requests后)
import asyncio
import requests
@asyncio.coroutine
def fetch_async(func, *args):
print(args)
# 事件循环
loop = asyncio.get_event_loop()
future = loop.run_in_executor(None, func, *args)
response = yield from future
print(response.url, response.content)
tasks = [
fetch_async(requests.get, 'http://www.cnblogs.com/eric/'),
fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]
loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()
# Author:wylkjj
# Date:2020/2/25
# -*- coding:utf-8 -*-
import gevent
from gevent import monkey
monkey.patch_all()
import requests
def fetch_async(method, url, req_kwargs):
print(method, url, req_kwargs)
response = requests.request(method=method, url=url, **req_kwargs)
print(response.url, response.content)
# ##### 发送请求 #####
gevent.joinall([
gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
])
# pip3 install twisted
# pip3 install wheel
# b. 下载twisted http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
# c. 进入下载目录,执行 pip3 install Twisted‑17.1.0‑cp35‑cp35m‑win_amd64.whl
from twisted.web.client import getPage
from twisted.internet import reactor
REV_COUNTER = 0
REQ_COUNTER = 0
def callback(contents):
print(contents,)
global REV_COUNTER
REV_COUNTER += 1
if REV_COUNTER == REQ_COUNTER:
reactor.stop()
url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
REQ_COUNTER = len(url_list)
for url in url_list:
print(url)
deferred = getPage(bytes(url, encoding='utf8'))
deferred.addCallback(callback)
reactor.run()
import socket:它提供了标准的 BSD Sockets API,可以访问底层操作系统Socket接口的全部方法。
tronado框架原理
自定义异步IO:
基于socket,setblocking(False)
IO多路复用(也是同步IO)
while True:
r,w,e = select.select([ ],[ ],[ ],1)
关于IO的详情博客:事件驱动IO模型:https://www.cnblogs.com/wylshkjj/p/10896994.html
二、scrapy框架
scrapy框架的安装
Linux
pip3 install scrapy
Windows
1.
pip3 install wheel
安装Twisted:版本信息知识一个格式,非正确版本
a. http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted, 下载:Twisted-19.1.0-cp37-cp37m-win_amd64.whl
b. 进入文件所在目录
c. pip3 install Twisted-19.1.0-cp37-cp37m-win_amd64.whl
2.
pip3 install scrapy:,此版本与urllib3模块产生冲突,如有此模块需要先卸载此模块
3.
windows上scrapy依赖 https://sourceforge.net/projects/pywin32/files/
项目的创建和执行
- scrapy使用方法
- 创建新项目命令:scrapy startproject scy (在想要创建的目录中执行此命令,scy是项目名)
- 创建一个爬虫:scrapy genspider example example.com (创建爬虫要先cd 到项目的目录中,example是爬虫文件名字,example.com 是所爬网页地址)
- 项目的执行命令:scrapy crawl chouti (抽屉是所要执行的爬虫文件)
- 过滤日志命令:scrapy crawl chouti --nolog (过滤chouti 爬的数据日志)
- 查看爬虫模板命令:scrapy genspider --list(显示四个模板:basic,crawl,csvfeed,xmlfeed)
- 防止蜘蛛(genspider )的权限,robkts.txt属性,在项目setting配置文件中修改ROBOTSTXT_OBEY属性使其值为ROBOTSTXT_OBEY=False
- project_name/
- scrapy.cfg 项目的主配置文件
- project_name/
- __init__.py
- items.py 设置数据存储模板,用于结构化数据,如:Django的Model
- pipelines.py 数据处理行为,如:一般结构化的数据持久化
- settings.py 真正配置文件,如:递归的层数,并发数,延迟下载等
- spiders/ 爬虫目录,如:创建文件,编写爬虫规则
- __init__.py
- 爬虫1.py
- 爬虫2.py
- 注意:创建爬虫还是要在命令行创建,运行项目,运行爬虫文件都要在命令行执行
# 部分项目代码展示,爬取优美图库图片
# -*- coding: utf-8 -*-
import scrapy
from scrapy.http import Request
from bs4 import BeautifulSoup
class UmeiSpider(scrapy.Spider):
name = 'umei'
allowed_domains = ['umei.cc']
start_urls = ['https://www.umei.cc/meinvtupian/meinvxiezhen/1.htm']
visited_set = set()
def parse(self, response):
self.visited_set.add(response.url) # 已经爬取的网页
# 1.将当前页所有的meizi图片爬下来
# 获取a标签并且属性为 class = TypeBigPics
main_page = BeautifulSoup(response.text, "html.parser")
item_list = main_page.find_all("a", attrs={'class': 'TypeBigPics'})
for item in item_list:
item = item.find_all("img",)
print(item)
# 2.获取:https://www.umei.cc/meinvtupian/meinvxiezhen/(\d+).htm
page_list = main_page.find_all("div", attrs={'class': 'NewPages'})
a_urls = 'https://www.umei.cc/meinvtupian/meinvxiezhen/'
a_list = page_list[0].find_all("a")
a_href = set()
for a in a_list:
a = a.get('href')
if a:
a_href.add(a_urls+a)
else:
pass
for i in a_href:
if i in self.visited_set:
pass
else:
obj = Request(url=i, method='GET', callback=self.parse)
yield obj
print("obj:", obj)
爬虫基础知识及scrapy框架使用和基本原理的更多相关文章
- Python爬虫进阶三之Scrapy框架安装配置
初级的爬虫我们利用urllib和urllib2库以及正则表达式就可以完成了,不过还有更加强大的工具,爬虫框架Scrapy,这安装过程也是煞费苦心哪,在此整理如下. Windows 平台: 我的系统是 ...
- 爬虫(九)scrapy框架简介和基础应用
概要 scrapy框架介绍 环境安装 基础使用 一.什么是Scrapy? Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架,非常出名,非常强悍.所谓的框架就是一个已经被集成了各种功能 ...
- python网络爬虫(2)——scrapy框架的基础使用
这里写一下爬虫大概的步骤,主要是自己巩固一下知识,顺便复习一下. 一,网络爬虫的步骤 1,创建一个工程 scrapy startproject 工程名称 创建好工程后,目录结构大概如下: 其中: sc ...
- python 爬虫基础知识一
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本. 网络爬虫必备知识点 1. Python基础知识2. P ...
- 分布式爬虫搭建系列 之三---scrapy框架初用
第一,scrapy框架的安装 通过命令提示符进行安装(如果没有安装的话) pip install Scrapy 如果需要卸载的话使用命令为: pip uninstall Scrapy 第二,scrap ...
- 爬虫(十五):Scrapy框架(二) Selector、Spider、Downloader Middleware
1. Scrapy框架 1.1 Selector的用法 我们之前介绍了利用Beautiful Soup.正则表达式来提取网页数据,这确实非常方便.而Scrapy还提供了自己的数据提取方法,即Selec ...
- Python3爬虫(十七) Scrapy框架(一)
Infi-chu: http://www.cnblogs.com/Infi-chu/ 1.框架架构图: 2.各文件功能scrapy.cfg 项目的配置文件items.py 定义了Item数据结构,所有 ...
- 爬虫 (5)- Scrapy 框架简介与入门
Scrapy 框架 Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页 ...
- Java并发(基础知识)—— Executor框架及线程池
在Java并发(基础知识)—— 创建.运行以及停止一个线程中讲解了两种创建线程的方式:直接继承Thread类以及实现Runnable接口并赋给Thread,这两种创建线程的方式在线程比较少的时候是没有 ...
- 爬虫(十四):Scrapy框架(一) 初识Scrapy、第一个案例
1. Scrapy框架 Scrapy功能非常强大,爬取效率高,相关扩展组件多,可配置和可扩展程度非常高,它几乎可以应对所有反爬网站,是目前Python中使用最广泛的爬虫框架. 1.1 Scrapy介绍 ...
随机推荐
- Linux 文件删除空间没有释放问题
最近阿里云频频告警.磁盘使用率飙升90%以上.遂查看磁盘使用情况 df -h 发现使用率却是很高 之后,通过du -h --max-depth=1 / 查看哪个目录下占用的资源较多并进行删除 后来发现 ...
- 销讯通CRM系统如何管理医药代表的销售过程
医药行业的销售代表与其他行业的销售代表在专业知识要求.客户群体.销售流程.以及行业特性等方面都存在明显的区别,他们必须具备更高的专业素养和综合能力. CRM(客户关系管理系统)在医药行业中对于管理医药 ...
- Mysql8.0修改配置参数lower_case_table_names
现象 今天在配置一个环境的数据库,所使用的系统要求该数据库 lower_case_table_names = 1 (对数据库表明.列名大小写不敏感) 我看了一下,在 Windows 上,默认值为 1. ...
- BigDecimal数据处理方法总结
前言 BigDecimal是Java编程语言中位于java.math包中的一个类,主要用于进行高精度的十进制数计算.它提供了对任意精度的十进制数进行精确计算的能力,适用于需要保持精度和执行准确计算 ...
- uni-app 横竖屏问题
前情 uni-app是我很喜欢的跨平台框架,它能开发小程序,H5,APP(安卓/iOS),对前端开发很友好,自带的IDE让开发体验也很棒,公司项目就是主推uni-app 坑位 最近有用户反馈闪屏页也叫 ...
- docker安装cas
直接docker pull apereo/cas ,docker run的时候各种报错: standard_init_linux.go:178: exec user process caused &q ...
- 获取公众号openid,通过unionid 和小程序用户绑定起来
时间仓促,暂时记录一下,有问题请留言 背景:目前客户项目有两套系统.一套暂时定为A系统,另一套为B系统,两套系统下有不同的公众号,小程序. 需求:B系统为用户端系统,需要发送公众号模板消息,所以需要用 ...
- django数据库反向迁移
目录 django数据库反向迁移 步骤一:连接MySQL 方式一:使用pymysql连接 方式二:使用mysqlclient连接 步骤二:迁移数据库 正向迁移(通过类创建表) 反向迁移(通过表创建类) ...
- 执行docker-compose up -d时出现ERROR: Failed to Setup IP tables: Unable to enable SKIP DNAT rule
原因是因为防火墙关闭之后需要重启docker服务. 执行: service docker restart 即可.
- springboot带参数的文件上传
这个工程是在内网环境进行开发,u口也被封住了,所以不能把代码拷贝出来,于是把业务部分进行脱敏处理,核心代码手写一遍如下:一.html关键代码 <form id = "createFor ...