UVA 11584 "Partitioning by Palindromes"(DP+Manacher)
•题意
•思路一
定义 dp[i] 表示 0~i 的最少划分数;
首先,用马拉车算法求解出回文半径数组;
对于第 i 个字符 si,遍历 j (0 ≤ j < i),判断以 j 为回文中心的最大回文串是否包含 si;
如果包含,dp[ i ]=min{dp[ i ],dp[2*j-i-1]+1};
•Code
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+; char t[maxn];
int r[maxn<<]; struct Manacher
{
char s[maxn<<];
void Init(char *ss,int len)
{
int index=;
s[index++]='#';
for(int i=;i < len;++i)
{
s[index++]=ss[i];
s[index++]='#';
}
s[index]='\0';
}
void mana(char *ss)
{
Init(ss,strlen(ss));
int len=strlen(s);
int R=-;
int C;
for(int i=;i < len;++i)
{
r[i]=R > i ? min(R-i+,r[*C-i]):;
for(;i-r[i] >= && i+r[i] < len && s[i-r[i]] == s[i+r[i]];r[i]++);
if(i+r[i] > R)
{
R=i+r[i]-;
C=i;
}
}
}
}_mana; int dp[maxn];
int Solve()
{
_mana.mana(t); dp[]=;
int len=strlen(t);
for(int i=;i < len;++i)
{
dp[i]=dp[i-]+;
for(int j=;j <= *i;++j)
{ ///t中的第i个字符在预处理后的s数组中的位置为2*i+1
///因为可能由偶回文的情况,所以需要用到'#'
///直接判断在s数组中j的对应的最大回文j+r[j]是否包含2*i+1
///如果包含,再找到2*i+1以j为中心的对称点2*j-(2*i+1)
///判断2*j-(2*i+1)对应于t中的位置的前一个位置(2*j-(2*i+1))/2-1是否在[0,len-1]范围内
///如果在,更新dp[i]
int cur=j+r[j];
int index=(*j-*i-)/-;
if(*i+ < cur)
dp[i]=min(dp[i],+(index >= ? dp[index]:));
}
}
return dp[len-];
}
int main()
{
// freopen("C:\\Users\\hyacinthLJP\\Desktop\\in&&out\\contest","r",stdin);
int test;
scanf("%d",&test);
while(test--)
{
scanf("%s",t);
printf("%d\n",Solve());
}
return ;
}
•思路二(reference from zishu)
定义dp[ i ]表示0~i划分成的最小回文串的个数,则dp[ i ]=min{d[ j ]+1 | j ≤ i && t[ j+1,....,i ]为回文串};
•code
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e3+; char t[maxn];
char s[maxn<<];
bool isPal[maxn][maxn];
int dp[maxn]; void Init()///O(n^2)预处理出t[i,..,j]是否为回文串
{
int len=strlen(t);
for(int i=;i < len;++i)
for(int j=;j < len;++j)
isPal[i][j]=false;
int index=;
s[index++]='#';
for(int i=;i < len;++i)
{
s[index++]=t[i];
s[index++]='#';
}
s[index]='\0'; for(int i=;i < index;++i)
{
int r=;
while(i-r >= && i+r < index && s[i-r] == s[i+r])
{
if((i-r)&)
isPal[(i-r)/][(i+r)/]=true;
r++;
}
}
} int Solve()
{
Init();
int len=strlen(t);
dp[]=;
for(int i=;i < len;i++)
{
dp[i]=dp[i-]+;
for(int j=;j < i;++j)
if(isPal[j][i])
dp[i]=min(dp[i],+(j > ? dp[j-]:));
}
return dp[len-];
}
int main()
{
// freopen("C:\\Users\\hyacinthLJP\\Desktop\\in&&out\\contest","r",stdin);
int test;
scanf("%d",&test);
while(test--)
{
scanf("%s",t);
printf("%d\n",Solve());
}
return ;
}
UVA 11584 "Partitioning by Palindromes"(DP+Manacher)的更多相关文章
- uva 11584 Partitioning by Palindromes 线性dp
// uva 11584 Partitioning by Palindromes 线性dp // // 题目意思是将一个字符串划分成尽量少的回文串 // // f[i]表示前i个字符能化成最少的回文串 ...
- UVA - 11584 Partitioning by Palindromes[序列DP]
UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...
- UVa 11584 - Partitioning by Palindromes(线性DP + 预处理)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 11584 Partitioning by Palindromes (字符串区间dp)
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVA - 11584 Partitioning by Palindromes(划分成回文串)(dp)
题意:输入一个由小写字母组成的字符串,你的任务是把它划分成尽量少的回文串,字符串长度不超过1000. 分析: 1.dp[i]为字符0~i划分成的最小回文串的个数. 2.dp[j] = Min(dp[j ...
- UVa 11584 Partitioning by Palindromes【DP】
题意:给出一个字符串,问最少能够划分成多少个回文串 dp[i]表示以第i个字母结束最少能够划分成的回文串的个数 dp[i]=min(dp[i],dp[j]+1)(如果从第j个字母到第i个字母是回文串) ...
- 【UVa】Partitioning by Palindromes(dp)
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=27&page=sh ...
- UVa 11584 Partitioning by Palindromes (简单DP)
题意:给定一个字符串,求出它最少可分成几个回文串. 析:dp[i] 表示前 i 个字符最少可分成几个回文串,dp[i] = min{ 1 + dp[j-1] | j-i是回文}. 代码如下: #pra ...
- 区间DP UVA 11584 Partitioning by Palindromes
题目传送门 /* 题意:给一个字符串,划分成尽量少的回文串 区间DP:状态转移方程:dp[i] = min (dp[i], dp[j-1] + 1); dp[i] 表示前i个字符划分的最少回文串, 如 ...
随机推荐
- MSSQL2008 数据压缩方法
数据压缩功能使得SOL Server 2008允许在表.索引和分区中执行数据压缩,这样不仅可以节省磁盘空间,而且允许更多数据置入RAM中,从而提升数据库查询的性能. 1.启用行压缩 如果我们要在指定的 ...
- typora 使用
菜单 输入+换行键,产生标题,自动更新 [toc] [TOC] 段落 按换行键建立新的一行可在行尾插入打断线,禁止向后插入 按换行键建立新的一行<br/> 标题 开头#的个数表示,空格+文 ...
- Leaflet地图框架使用手册
因为要做一个交通仿真项目,需要用到这个地图库,但是查询官方API麻烦,而且这个地图框架的API做的用起来确实太麻烦了..就从网上各种地方查找了一些,方便用, 大多都是复制,,见谅!! L.Map AP ...
- SDUT-3373_数据结构实验之查找一:二叉排序树
数据结构实验之查找一:二叉排序树 Time Limit: 400 ms Memory Limit: 65536 KiB Problem Description 对应给定的一个序列可以唯一确定一棵二叉排 ...
- TCPThree_C杯 Day1
题解 或 正规题解 已经很详细,不再赘述. 跟着wjx打代码,不怕卡题. 忘开long long智障错误第四次左偏树
- shell学习(21)- tr
Linux tr 命令用于转换或删除文件中的字符. tr 指令从标准输入设备读取数据,经过字符串转译后,将结果输出到标准输出设备. 在tr中利用集合的概念,可以轻松地将字符从一个集合映射到另一个集合中 ...
- (六)IO流之过滤流
过滤字节流FilterInputStream和FilterOutputStream BufferedInputStream和BufferedOutputStream 需要使用已存在的节点流来构造 ...
- Python之路,Day1 - Python基础1 --转自金角大王
本节内容 Python介绍 发展史 Python 2 or 3? 安装 Hello World程序 变量 用户输入 模块初识 .pyc是个什么鬼? 数据类型初识 数据运算 表达式if ...else语 ...
- 2019-9-23-dotnet-判断特定进程存在方法
title author date CreateTime categories dotnet 判断特定进程存在方法 lindexi 2019-09-23 16:20:42 +0800 2019-09- ...
- docker安装 2016-11-06 19:14 299人阅读 评论(31) 收藏
Docker支持运行在以下CentOS版本: CentOS 7.X 安装在二进制兼容的EL7版本如 Scientific Linux也是可能成功的,但是Docker 没有测试过并且不官方支持. 此文带 ...
