Description

有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i)。现在有一只蚂蚁,从

给定的起点 v0出发,沿着图 G 的边爬行。开始时,它的体力为 1。每爬过一条

边,它的体力都会下降为原来的 ρ 倍,其中ρ 是一个给定的小于1的正常数。而

蚂蚁爬到某个顶点时的幸福度,是它当时的体力与该点权值的乘积。

我们把蚂蚁在爬行路径上幸福度的总和记为 H。很显然,对于不同的爬行路

径,H 的值也可能不同。小 Z 对 H 值的最大可能值很感兴趣,你能帮助他计算

吗?注意,蚂蚁爬行的路径长度可能是无穷的。

Input

每一行中两个数之间用一个空格隔开。

输入文件第一行包含两个正整数 n, m,分别表示 G 中顶点的个数和边的条

数。

第二行包含 n个非负实数,依次表示 n个顶点权值 w(1), w(2), …, w(n)。

第三行包含一个正整数 v0,表示给定的起点。

第四行包含一个实数 ρ,表示给定的小于 1的正常数。

接下来 m行,每行两个正整数 x, y,表示<x, y>是G的一条有向边。可能有

自环,但不会有重边。

Output

仅包含一个实数,即 H值的最大可能值,四舍五入到小数点后一位。

Sample Input

5 5

10.0 8.0 8.0 8.0 15.0

1

0.5

1 2

2 3

3 4

4 2

4 5

Sample Output

18.0

题解

当走无限步时 , 答案会很快到达一个临界值 , 这个值趋于不变 , 因为这个时候的p已经很小了,对答案的贡献很小 , 所以可以设定一个极大的步数 , 求出走完这么多步之后的答案 ,

考虑倍增floyd , 设\(f[t][i][j]\) 表示从i出发走了 \(2^t\) 到达j 的贡献,转移方程是

\(f[t][i][j] = max(f[t][i][j] , f[t-1][i][k] + f[t-1][k][j] * p ^ {2 ^ {t-1}}\)

倍增一下就好。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cmath>
using namespace std;
const int N = 110;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , m , S , cnt;
double p;
int head[N];
double a[N] , f[N][N] , g[N][N] , t[N][N];
struct edge{ int v , nex; } e[N*10];
inline void add(int u , int v) { e[++cnt].v = v; e[cnt].nex = head[u]; head[u] = cnt; return ; } void mul(int K)
{
for(int i = 1 ; i <= n ; ++i) for(int j = 1 ; j <= n ; ++j) g[i][j] = t[i][j] = f[i][j] , f[i][j] = -1e8;
for(int k = 1 ; k <= n ; ++k) // 我之前居然傻到没有枚举 k……
for(int i = 1 ; i <= n ; ++i)
for(int j = 1 ; j <= n ; ++j)
f[i][j] = max(f[i][j] , g[i][k] + t[k][j] * p);
return ;
} double ksm(int k)
{
for(int i = 1 ; i <= k ; ++i) mul(i) , p = p * p;
double ans = 0;
for(int i = 1 ; i <= n ; ++i) ans = max(ans , f[S][i]);
return ans + a[S];
} int main()
{
n = read(); m = read();
for(int i = 1 ; i <= n ; ++i) scanf("%lf" , &a[i]);
S = read(); scanf("%lf" , &p);
for(int i = 1 ; i <= n ; ++i) for(int j = 1 ; j <= n ; ++j) f[i][j] = (i == j ? 0 : -1e8); // 没有的要赋成-inf , 要不然就会用本来没有的边 , 更新答案。
for(int i = 1 , u , v; i <= m ; ++i) u = read() , v = read() , add(u , v) , f[u][v] = a[v] * p;
printf("%.1f\n" , ksm(30));
return 0;
}

BZOJ 2306: [Ctsc2011]幸福路径的更多相关文章

  1. 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)

    2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 437 Description 有向 ...

  2. BZOJ2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  3. BZOJ2306:[CTSC2011]幸福路径(倍增Floyd)

    Description 有向图 G有n个顶点 1,  2, …,  n,点i 的权值为 w(i).现在有一只蚂蚁,从给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条边,它 ...

  4. [CTSC2011]幸福路径

    题目描述 有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它的体力都会下降 ...

  5. 【bzoj2306】[Ctsc2011]幸福路径 倍增Floyd

    题目描述 一张n个点的有向图,每个点有一个权值.一开始从点$v_0$出发沿图中的边任意移动,移动到路径上的第$i$个点 输入 每一行中两个数之间用一个空格隔开. 输入文件第一行包含两个正整数 n,  ...

  6. bzoj2306 [Ctsc2011]幸福路径 倍增 Floyd

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2306 题解 倍增 Floyd. 令 \(f[i][j][k]\) 表示走了 \(2^i\) 步 ...

  7. BZOJ2306 [Ctsc2011]幸福路径[倍增]

    这个有环的情况非常的讨厌,一开始想通过数学推等比数列的和,但是发现比较繁就不做了. 然后挖掘这题性质. 数据比较小,但是体力可以很接近1(恼怒),也就是说可能可以跳很多很多步.算了一下,大概跳了2e7 ...

  8. 【BZOJ2306】幸福路径(动态规划,倍增)

    [BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...

  9. BZOJ 2337 XOR和路径 | 高斯消元 期望 位运算

    BZOJ 2337 XOR和路径 题解 这道题和游走那道题很像,但又不是完全相同. 因为异或,所以我们考虑拆位,分别考虑每一位: 设x[u]是从点u出发.到达点n时这一位异或和是1的概率. 对于所有这 ...

随机推荐

  1. Angular解析json

    一. 解析本地Json数据并展示(待定) 1. 创建服务{ 创建一个接口对象用于接收Json数据 通过HttpClient获得本地Json文件 } 2. 组件中引入服务调用服务方法拿文件用subscr ...

  2. 1236 - Pairs Forming LCM

    1236 - Pairs Forming LCM   Find the result of the following code: long long pairsFormLCM( int n ) {  ...

  3. Jedis客户端即redis中的pipeline批量操作

    关注公众号:CoderBuff,回复"redis"获取<Redis5.x入门教程>完整版PDF. <Redis5.x入门教程>目录 第一章 · 准备工作 第 ...

  4. javascript30--day01--Drum kit

    相关视频链接:https://www.bilibili.com/video/av8481988/?p=3 Drum kit 做题思路(1)监听键盘事件 addEventListener(‘事件名’,执 ...

  5. idea生成构造方法的快捷键(看这篇就够了)

    使用快捷键能加快编写代码的速度和质量 idea生成构造方法的快捷键是Alt+Insert,然后选中Constructor

  6. 面试官:你用过mysql哪些存储引擎,请分别展开介绍一下

    这是高级开发者面试时经常被问的问题.实际我们在平时的开发中,经常会遇到的,在用SQLyog等工具创建表时,就有一个引擎项要你去选.如下图: Mysql的存储引擎有这么多种,实际我们在平时用的最多的莫过 ...

  7. 9maven依赖传递性、依赖原则

    maven的依赖传递: A.jar->B.jar->C.jar 要使 A.jar ->C.jar:当且仅当 B.jar 依赖于C.jar的范围是compile,如果B依赖于C的范围不 ...

  8. 为什么你SQL Server中SQL日期转换出错了呢?

    开发人员有时候使用类似下面SQL将字符串转换为日期时间类型,乍一看,这样的SQL的写法是没有什么问题的.但是这样的SQL其实有时候就是一个定时炸弹,随时可能出现问题(),下面简单对这种情况进行一个简单 ...

  9. Kubernetes CI/CD(1)

    本文通过在kubernetes上启动Jenkins服务,并将宿主机上的docker.docker.sock挂载到Jenkins容器中,实现在Jenkins容器中直接打镜像的形式实现CI功能. Kube ...

  10. opencv —— Laplacian 拉普拉斯算子、二阶导数用于边缘检测

    Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子:   计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, ...